![]() |
Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvexsv | Structured version Visualization version GIF version |
Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvexsv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexsv 3363 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V [𝑦 / 𝑥]𝜑) | |
2 | rexv 3499 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
3 | rexv 3499 | . 2 ⊢ (∃𝑦 ∈ V [𝑦 / 𝑥]𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1781 [wsb 2067 ∃wrex 3070 Vcvv 3474 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2371 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-v 3476 |
This theorem is referenced by: onfrALTlem1 43299 onfrALTlem1VD 43641 |
Copyright terms: Public domain | W3C validator |