Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cbvexsv Structured version   Visualization version   GIF version

Theorem cbvexsv 44544
Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
cbvexsv (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Distinct variable group:   𝜑,𝑦
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem cbvexsv
StepHypRef Expression
1 cbvrexsv 3364 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V [𝑦 / 𝑥]𝜑)
2 rexv 3506 . 2 (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑)
3 rexv 3506 . 2 (∃𝑦 ∈ V [𝑦 / 𝑥]𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
41, 2, 33bitr3i 301 1 (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1775  [wsb 2061  wrex 3067  Vcvv 3477
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-13 2374  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1539  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ral 3059  df-rex 3068  df-v 3479
This theorem is referenced by:  onfrALTlem1  44545  onfrALTlem1VD  44887
  Copyright terms: Public domain W3C validator