| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvexsv | Structured version Visualization version GIF version | ||
| Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvexsv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrexsv 3333 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V [𝑦 / 𝑥]𝜑) | |
| 2 | rexv 3464 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
| 3 | rexv 3464 | . 2 ⊢ (∃𝑦 ∈ V [𝑦 / 𝑥]𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | |
| 4 | 1, 2, 3 | 3bitr3i 301 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 [wsb 2067 ∃wrex 3056 Vcvv 3436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-13 2372 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rex 3057 df-v 3438 |
| This theorem is referenced by: onfrALTlem1 44651 onfrALTlem1VD 44992 |
| Copyright terms: Public domain | W3C validator |