Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cbvexsv | Structured version Visualization version GIF version |
Description: A theorem pertaining to the substitution for an existentially quantified variable when the substituted variable does not occur in the quantified wff. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvexsv | ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrexsv 3394 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑦 ∈ V [𝑦 / 𝑥]𝜑) | |
2 | rexv 3447 | . 2 ⊢ (∃𝑥 ∈ V 𝜑 ↔ ∃𝑥𝜑) | |
3 | rexv 3447 | . 2 ⊢ (∃𝑦 ∈ V [𝑦 / 𝑥]𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) | |
4 | 1, 2, 3 | 3bitr3i 300 | 1 ⊢ (∃𝑥𝜑 ↔ ∃𝑦[𝑦 / 𝑥]𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∃wex 1783 [wsb 2068 ∃wrex 3064 Vcvv 3422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 |
This theorem is referenced by: onfrALTlem1 42057 onfrALTlem1VD 42399 |
Copyright terms: Public domain | W3C validator |