Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem1 Structured version   Visualization version   GIF version

Theorem onfrALTlem1 43772
Description: Lemma for onfrALT 43773. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
Distinct variable group:   𝑥,𝑎,𝑦

Proof of Theorem onfrALTlem1
StepHypRef Expression
1 19.8a 2173 . . . . 5 ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅))
21a1i 11 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)))
3 cbvexsv 43771 . . . 4 (∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
42, 3imbitrdi 250 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)))
5 sbsbc 3781 . . . . 5 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ [𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
6 onfrALTlem4 43767 . . . . 5 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
75, 6bitri 275 . . . 4 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
87exbii 1849 . . 3 (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
94, 8imbitrdi 250 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
10 df-rex 3070 . 2 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
119, 10imbitrrdi 251 1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1780  [wsb 2066  wne 2939  wrex 3069  [wsbc 3777  cin 3947  wss 3948  c0 4322  Oncon0 6364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-13 2370  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-in 3955  df-nul 4323
This theorem is referenced by:  onfrALT  43773
  Copyright terms: Public domain W3C validator