Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > onfrALTlem1 | Structured version Visualization version GIF version |
Description: Lemma for onfrALT 42058. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
onfrALTlem1 | ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.8a 2176 | . . . . 5 ⊢ ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
2 | 1 | a1i 11 | . . . 4 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅))) |
3 | cbvexsv 42056 | . . . 4 ⊢ (∃𝑥(𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
4 | 2, 3 | syl6ib 250 | . . 3 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅))) |
5 | sbsbc 3715 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ [𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅)) | |
6 | onfrALTlem4 42052 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) | |
7 | 5, 6 | bitri 274 | . . . 4 ⊢ ([𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ (𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
8 | 7 | exbii 1851 | . . 3 ⊢ (∃𝑦[𝑦 / 𝑥](𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) |
9 | 4, 8 | syl6ib 250 | . 2 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅))) |
10 | df-rex 3069 | . 2 ⊢ (∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅ ↔ ∃𝑦(𝑦 ∈ 𝑎 ∧ (𝑎 ∩ 𝑦) = ∅)) | |
11 | 9, 10 | syl6ibr 251 | 1 ⊢ ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥 ∈ 𝑎 ∧ (𝑎 ∩ 𝑥) = ∅) → ∃𝑦 ∈ 𝑎 (𝑎 ∩ 𝑦) = ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 [wsb 2068 ≠ wne 2942 ∃wrex 3064 [wsbc 3711 ∩ cin 3882 ⊆ wss 3883 ∅c0 4253 Oncon0 6251 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-in 3890 df-nul 4254 |
This theorem is referenced by: onfrALT 42058 |
Copyright terms: Public domain | W3C validator |