Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onfrALTlem1 Structured version   Visualization version   GIF version

Theorem onfrALTlem1 44519
Description: Lemma for onfrALT 44520. (Contributed by Alan Sare, 22-Jul-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
onfrALTlem1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
Distinct variable group:   𝑥,𝑎,𝑦

Proof of Theorem onfrALTlem1
StepHypRef Expression
1 19.8a 2182 . . . . 5 ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅))
21a1i 11 . . . 4 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅)))
3 cbvexsv 44518 . . . 4 (∃𝑥(𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
42, 3imbitrdi 251 . . 3 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅)))
5 sbsbc 3808 . . . . 5 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ [𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅))
6 onfrALTlem4 44514 . . . . 5 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
75, 6bitri 275 . . . 4 ([𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ (𝑦𝑎 ∧ (𝑎𝑦) = ∅))
87exbii 1846 . . 3 (∃𝑦[𝑦 / 𝑥](𝑥𝑎 ∧ (𝑎𝑥) = ∅) ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
94, 8imbitrdi 251 . 2 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅)))
10 df-rex 3077 . 2 (∃𝑦𝑎 (𝑎𝑦) = ∅ ↔ ∃𝑦(𝑦𝑎 ∧ (𝑎𝑦) = ∅))
119, 10imbitrrdi 252 1 ((𝑎 ⊆ On ∧ 𝑎 ≠ ∅) → ((𝑥𝑎 ∧ (𝑎𝑥) = ∅) → ∃𝑦𝑎 (𝑎𝑦) = ∅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wex 1777  [wsb 2064  wne 2946  wrex 3076  [wsbc 3804  cin 3975  wss 3976  c0 4352  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-13 2380  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-in 3983  df-nul 4353
This theorem is referenced by:  onfrALT  44520
  Copyright terms: Public domain W3C validator