![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2375. See cbviunvg 5047 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
2 | 1 | eleq2d 2825 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
3 | 2 | cbvrexvw 3236 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
4 | 3 | abbii 2807 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
5 | df-iun 4998 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
6 | df-iun 4998 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
7 | 4, 5, 6 | 3eqtr4i 2773 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 {cab 2712 ∃wrex 3068 ∪ ciun 4996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rex 3069 df-iun 4998 |
This theorem is referenced by: iunxdif2 5058 otiunsndisj 5530 onfununi 8380 oelim2 8632 marypha2lem2 9474 ttrclselem1 9763 ttrclselem2 9764 trcl 9766 r1om 10281 fictb 10282 cfsmolem 10308 cfsmo 10309 domtriomlem 10480 domtriom 10481 pwfseq 10702 wunex2 10776 wuncval2 10785 fsuppmapnn0fiubex 14030 s3iunsndisj 15004 ackbijnn 15861 smndex1basss 18931 smndex1mgm 18933 efgs1b 19769 ablfaclem3 20122 ptbasfi 23605 bcth3 25379 itg1climres 25764 suppovss 32696 hashunif 32816 gsumwrd2dccat 33053 bnj601 34913 cvmliftlem15 35283 neibastop2 36344 filnetlem4 36364 sstotbnd2 37761 heiborlem3 37800 heibor 37808 lcfr 41568 mapdrval 41630 corclrcl 43697 trclrelexplem 43701 dftrcl3 43710 cotrcltrcl 43715 dfrtrcl3 43723 corcltrcl 43729 cotrclrcl 43732 ssmapsn 45159 cnrefiisplem 45785 cnrefiisp 45786 meaiuninclem 46436 meaiuninc 46437 meaiininc 46443 carageniuncllem2 46478 caratheodorylem1 46482 caratheodorylem2 46483 caratheodory 46484 ovnsubadd 46528 hoidmv1le 46550 hoidmvle 46556 ovnhoilem2 46558 hspmbl 46585 ovnovollem3 46614 vonvolmbl 46617 smflimlem2 46728 smflimlem3 46729 smflimlem4 46730 smflim 46733 smflim2 46762 smflimsup 46784 otiunsndisjX 47229 |
Copyright terms: Public domain | W3C validator |