![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2934 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2934 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviun 4792 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1601 ∪ ciun 4755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ral 3095 df-rex 3096 df-iun 4757 |
This theorem is referenced by: iunxdif2 4803 otiunsndisj 5219 onfununi 7723 oelim2 7961 marypha2lem2 8632 trcl 8903 r1om 9403 fictb 9404 cfsmolem 9429 cfsmo 9430 domtriomlem 9601 domtriom 9602 pwfseq 9823 wunex2 9897 wuncval2 9906 fsuppmapnn0fiubex 13114 s3iunsndisj 14120 ackbijnn 14968 efgs1b 18537 ablfaclem3 18877 ptbasfi 21797 bcth3 23541 itg1climres 23922 hashunif 30130 bnj601 31593 cvmliftlem15 31883 trpredlem1 32319 trpredtr 32322 trpredmintr 32323 trpredrec 32330 neibastop2 32948 filnetlem4 32968 sstotbnd2 34202 heiborlem3 34241 heibor 34249 lcfr 37744 mapdrval 37806 corclrcl 38966 trclrelexplem 38970 dftrcl3 38979 cotrcltrcl 38984 dfrtrcl3 38992 corcltrcl 38998 cotrclrcl 39001 ssmapsn 40339 cnrefiisplem 40979 cnrefiisp 40980 meaiuninclem 41631 meaiuninc 41632 meaiininc 41638 carageniuncllem2 41673 caratheodorylem1 41677 caratheodorylem2 41678 caratheodory 41679 ovnsubadd 41723 hoidmv1le 41745 hoidmvle 41751 ovnhoilem2 41753 hspmbl 41780 ovnovollem3 41809 vonvolmbl 41812 smflimlem2 41917 smflimlem3 41918 smflimlem4 41919 smflim 41922 smflim2 41949 smflimsup 41971 otiunsndisjX 42330 |
Copyright terms: Public domain | W3C validator |