| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2371. See cbviunvg 5009 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2815 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3217 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2797 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4960 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4960 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2763 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 ∪ ciun 4958 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rex 3055 df-iun 4960 |
| This theorem is referenced by: iunxdif2 5020 otiunsndisj 5483 onfununi 8313 oelim2 8562 marypha2lem2 9394 ttrclselem1 9685 ttrclselem2 9686 trcl 9688 r1om 10203 fictb 10204 cfsmolem 10230 cfsmo 10231 domtriomlem 10402 domtriom 10403 pwfseq 10624 wunex2 10698 wuncval2 10707 fsuppmapnn0fiubex 13964 s3iunsndisj 14941 ackbijnn 15801 smndex1basss 18839 smndex1mgm 18841 efgs1b 19673 ablfaclem3 20026 ptbasfi 23475 bcth3 25238 itg1climres 25622 suppovss 32611 hashunif 32738 gsumwrd2dccat 33014 fldextrspunlsplem 33675 bnj601 34917 cvmliftlem15 35292 neibastop2 36356 filnetlem4 36376 sstotbnd2 37775 heiborlem3 37814 heibor 37822 lcfr 41586 mapdrval 41648 corclrcl 43703 trclrelexplem 43707 dftrcl3 43716 cotrcltrcl 43721 dfrtrcl3 43729 corcltrcl 43735 cotrclrcl 43738 ssmapsn 45217 cnrefiisplem 45834 cnrefiisp 45835 meaiuninclem 46485 meaiuninc 46486 meaiininc 46492 carageniuncllem2 46527 caratheodorylem1 46531 caratheodorylem2 46532 caratheodory 46533 ovnsubadd 46577 hoidmv1le 46599 hoidmvle 46605 ovnhoilem2 46607 hspmbl 46634 ovnovollem3 46663 vonvolmbl 46666 smflimlem2 46777 smflimlem3 46778 smflimlem4 46779 smflim 46782 smflim2 46811 smflimsup 46833 otiunsndisjX 47284 |
| Copyright terms: Public domain | W3C validator |