Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 4968 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviun 4962 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-iun 4923 |
This theorem is referenced by: iunxdif2 4979 otiunsndisj 5428 onfununi 8143 oelim2 8388 marypha2lem2 9125 trpredlem1 9405 trpredtr 9408 trpredmintr 9409 trpredrec 9415 trcl 9417 r1om 9931 fictb 9932 cfsmolem 9957 cfsmo 9958 domtriomlem 10129 domtriom 10130 pwfseq 10351 wunex2 10425 wuncval2 10434 fsuppmapnn0fiubex 13640 s3iunsndisj 14607 ackbijnn 15468 smndex1basss 18459 smndex1mgm 18461 efgs1b 19257 ablfaclem3 19605 ptbasfi 22640 bcth3 24400 itg1climres 24784 suppovss 30919 hashunif 31028 bnj601 32800 cvmliftlem15 33160 ttrclselem1 33711 ttrclselem2 33712 neibastop2 34477 filnetlem4 34497 sstotbnd2 35859 heiborlem3 35898 heibor 35906 lcfr 39526 mapdrval 39588 corclrcl 41204 trclrelexplem 41208 dftrcl3 41217 cotrcltrcl 41222 dfrtrcl3 41230 corcltrcl 41236 cotrclrcl 41239 ssmapsn 42645 cnrefiisplem 43260 cnrefiisp 43261 meaiuninclem 43908 meaiuninc 43909 meaiininc 43915 carageniuncllem2 43950 caratheodorylem1 43954 caratheodorylem2 43955 caratheodory 43956 ovnsubadd 44000 hoidmv1le 44022 hoidmvle 44028 ovnhoilem2 44030 hspmbl 44057 ovnovollem3 44086 vonvolmbl 44089 smflimlem2 44194 smflimlem3 44195 smflimlem4 44196 smflim 44199 smflim2 44226 smflimsup 44248 otiunsndisjX 44658 |
Copyright terms: Public domain | W3C validator |