![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 5046 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviun 5040 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-iun 5000 |
This theorem is referenced by: iunxdif2 5057 otiunsndisj 5521 onfununi 8341 oelim2 8595 marypha2lem2 9431 ttrclselem1 9720 ttrclselem2 9721 trcl 9723 r1om 10239 fictb 10240 cfsmolem 10265 cfsmo 10266 domtriomlem 10437 domtriom 10438 pwfseq 10659 wunex2 10733 wuncval2 10742 fsuppmapnn0fiubex 13957 s3iunsndisj 14915 ackbijnn 15774 smndex1basss 18786 smndex1mgm 18788 efgs1b 19604 ablfaclem3 19957 ptbasfi 23085 bcth3 24848 itg1climres 25232 suppovss 31906 hashunif 32018 bnj601 33931 cvmliftlem15 34289 neibastop2 35246 filnetlem4 35266 sstotbnd2 36642 heiborlem3 36681 heibor 36689 lcfr 40456 mapdrval 40518 corclrcl 42458 trclrelexplem 42462 dftrcl3 42471 cotrcltrcl 42476 dfrtrcl3 42484 corcltrcl 42490 cotrclrcl 42493 ssmapsn 43915 cnrefiisplem 44545 cnrefiisp 44546 meaiuninclem 45196 meaiuninc 45197 meaiininc 45203 carageniuncllem2 45238 caratheodorylem1 45242 caratheodorylem2 45243 caratheodory 45244 ovnsubadd 45288 hoidmv1le 45310 hoidmvle 45316 ovnhoilem2 45318 hspmbl 45345 ovnovollem3 45374 vonvolmbl 45377 smflimlem2 45488 smflimlem3 45489 smflimlem4 45490 smflim 45493 smflim2 45522 smflimsup 45544 otiunsndisjX 45987 |
Copyright terms: Public domain | W3C validator |