| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2370. See cbviunvg 5006 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3216 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2796 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4957 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4957 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-iun 4957 |
| This theorem is referenced by: iunxdif2 5017 otiunsndisj 5480 onfununi 8310 oelim2 8559 marypha2lem2 9387 ttrclselem1 9678 ttrclselem2 9679 trcl 9681 r1om 10196 fictb 10197 cfsmolem 10223 cfsmo 10224 domtriomlem 10395 domtriom 10396 pwfseq 10617 wunex2 10691 wuncval2 10700 fsuppmapnn0fiubex 13957 s3iunsndisj 14934 ackbijnn 15794 smndex1basss 18832 smndex1mgm 18834 efgs1b 19666 ablfaclem3 20019 ptbasfi 23468 bcth3 25231 itg1climres 25615 suppovss 32604 hashunif 32731 gsumwrd2dccat 33007 fldextrspunlsplem 33668 bnj601 34910 cvmliftlem15 35285 neibastop2 36349 filnetlem4 36369 sstotbnd2 37768 heiborlem3 37807 heibor 37815 lcfr 41579 mapdrval 41641 corclrcl 43696 trclrelexplem 43700 dftrcl3 43709 cotrcltrcl 43714 dfrtrcl3 43722 corcltrcl 43728 cotrclrcl 43731 ssmapsn 45210 cnrefiisplem 45827 cnrefiisp 45828 meaiuninclem 46478 meaiuninc 46479 meaiininc 46485 carageniuncllem2 46520 caratheodorylem1 46524 caratheodorylem2 46525 caratheodory 46526 ovnsubadd 46570 hoidmv1le 46592 hoidmvle 46598 ovnhoilem2 46600 hspmbl 46627 ovnovollem3 46656 vonvolmbl 46659 smflimlem2 46770 smflimlem3 46771 smflimlem4 46772 smflim 46775 smflim2 46804 smflimsup 46826 otiunsndisjX 47280 |
| Copyright terms: Public domain | W3C validator |