| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 4989 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2817 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3211 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2798 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4941 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4941 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2764 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 {cab 2709 ∃wrex 3056 ∪ ciun 4939 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rex 3057 df-iun 4941 |
| This theorem is referenced by: iunxdif2 5000 otiunsndisj 5458 onfununi 8261 oelim2 8510 marypha2lem2 9320 ttrclselem1 9615 ttrclselem2 9616 trcl 9618 r1om 10134 fictb 10135 cfsmolem 10161 cfsmo 10162 domtriomlem 10333 domtriom 10334 pwfseq 10555 wunex2 10629 wuncval2 10638 fsuppmapnn0fiubex 13899 s3iunsndisj 14875 ackbijnn 15735 smndex1basss 18813 smndex1mgm 18815 efgs1b 19648 ablfaclem3 20001 ptbasfi 23496 bcth3 25258 itg1climres 25642 suppovss 32662 hashunif 32788 gsumwrd2dccat 33047 fldextrspunlsplem 33686 bnj601 34932 cvmliftlem15 35342 neibastop2 36403 filnetlem4 36423 sstotbnd2 37822 heiborlem3 37861 heibor 37869 lcfr 41632 mapdrval 41694 corclrcl 43748 trclrelexplem 43752 dftrcl3 43761 cotrcltrcl 43766 dfrtrcl3 43774 corcltrcl 43780 cotrclrcl 43783 ssmapsn 45261 cnrefiisplem 45875 cnrefiisp 45876 meaiuninclem 46526 meaiuninc 46527 meaiininc 46533 carageniuncllem2 46568 caratheodorylem1 46572 caratheodorylem2 46573 caratheodory 46574 ovnsubadd 46618 hoidmv1le 46640 hoidmvle 46646 ovnhoilem2 46648 hspmbl 46675 ovnovollem3 46704 vonvolmbl 46707 smflimlem2 46818 smflimlem3 46819 smflimlem4 46820 smflim 46823 smflim2 46852 smflimsup 46874 otiunsndisjX 47318 |
| Copyright terms: Public domain | W3C validator |