![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 5046 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2904 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2904 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviun 5040 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∪ ciun 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3063 df-rex 3072 df-iun 5000 |
This theorem is referenced by: iunxdif2 5057 otiunsndisj 5521 onfununi 8341 oelim2 8595 marypha2lem2 9431 ttrclselem1 9720 ttrclselem2 9721 trcl 9723 r1om 10239 fictb 10240 cfsmolem 10265 cfsmo 10266 domtriomlem 10437 domtriom 10438 pwfseq 10659 wunex2 10733 wuncval2 10742 fsuppmapnn0fiubex 13957 s3iunsndisj 14915 ackbijnn 15774 smndex1basss 18786 smndex1mgm 18788 efgs1b 19604 ablfaclem3 19957 ptbasfi 23085 bcth3 24848 itg1climres 25232 suppovss 31937 hashunif 32049 bnj601 33962 cvmliftlem15 34320 neibastop2 35294 filnetlem4 35314 sstotbnd2 36690 heiborlem3 36729 heibor 36737 lcfr 40504 mapdrval 40566 corclrcl 42506 trclrelexplem 42510 dftrcl3 42519 cotrcltrcl 42524 dfrtrcl3 42532 corcltrcl 42538 cotrclrcl 42541 ssmapsn 43963 cnrefiisplem 44593 cnrefiisp 44594 meaiuninclem 45244 meaiuninc 45245 meaiininc 45251 carageniuncllem2 45286 caratheodorylem1 45290 caratheodorylem2 45291 caratheodory 45292 ovnsubadd 45336 hoidmv1le 45358 hoidmvle 45364 ovnhoilem2 45366 hspmbl 45393 ovnovollem3 45422 vonvolmbl 45425 smflimlem2 45536 smflimlem3 45537 smflimlem4 45538 smflim 45541 smflim2 45570 smflimsup 45592 otiunsndisjX 46035 |
Copyright terms: Public domain | W3C validator |