| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2370. See cbviunvg 4991 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3208 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2796 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4943 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4943 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ ciun 4941 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-iun 4943 |
| This theorem is referenced by: iunxdif2 5002 otiunsndisj 5463 onfununi 8264 oelim2 8513 marypha2lem2 9326 ttrclselem1 9621 ttrclselem2 9622 trcl 9624 r1om 10137 fictb 10138 cfsmolem 10164 cfsmo 10165 domtriomlem 10336 domtriom 10337 pwfseq 10558 wunex2 10632 wuncval2 10641 fsuppmapnn0fiubex 13899 s3iunsndisj 14875 ackbijnn 15735 smndex1basss 18779 smndex1mgm 18781 efgs1b 19615 ablfaclem3 19968 ptbasfi 23466 bcth3 25229 itg1climres 25613 suppovss 32623 hashunif 32751 gsumwrd2dccat 33020 fldextrspunlsplem 33640 bnj601 34887 cvmliftlem15 35271 neibastop2 36335 filnetlem4 36355 sstotbnd2 37754 heiborlem3 37793 heibor 37801 lcfr 41564 mapdrval 41626 corclrcl 43680 trclrelexplem 43684 dftrcl3 43693 cotrcltrcl 43698 dfrtrcl3 43706 corcltrcl 43712 cotrclrcl 43715 ssmapsn 45194 cnrefiisplem 45810 cnrefiisp 45811 meaiuninclem 46461 meaiuninc 46462 meaiininc 46468 carageniuncllem2 46503 caratheodorylem1 46507 caratheodorylem2 46508 caratheodory 46509 ovnsubadd 46553 hoidmv1le 46575 hoidmvle 46581 ovnhoilem2 46583 hspmbl 46610 ovnovollem3 46639 vonvolmbl 46642 smflimlem2 46753 smflimlem3 46754 smflimlem4 46755 smflim 46758 smflim2 46787 smflimsup 46809 otiunsndisjX 47263 |
| Copyright terms: Public domain | W3C validator |