| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2376. See cbviunvg 5018 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2820 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3221 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2802 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4969 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4969 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2768 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 {cab 2713 ∃wrex 3060 ∪ ciun 4967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rex 3061 df-iun 4969 |
| This theorem is referenced by: iunxdif2 5029 otiunsndisj 5495 onfununi 8355 oelim2 8607 marypha2lem2 9448 ttrclselem1 9739 ttrclselem2 9740 trcl 9742 r1om 10257 fictb 10258 cfsmolem 10284 cfsmo 10285 domtriomlem 10456 domtriom 10457 pwfseq 10678 wunex2 10752 wuncval2 10761 fsuppmapnn0fiubex 14010 s3iunsndisj 14987 ackbijnn 15844 smndex1basss 18883 smndex1mgm 18885 efgs1b 19717 ablfaclem3 20070 ptbasfi 23519 bcth3 25283 itg1climres 25667 suppovss 32658 hashunif 32785 gsumwrd2dccat 33061 fldextrspunlsplem 33714 bnj601 34951 cvmliftlem15 35320 neibastop2 36379 filnetlem4 36399 sstotbnd2 37798 heiborlem3 37837 heibor 37845 lcfr 41604 mapdrval 41666 corclrcl 43731 trclrelexplem 43735 dftrcl3 43744 cotrcltrcl 43749 dfrtrcl3 43757 corcltrcl 43763 cotrclrcl 43766 ssmapsn 45240 cnrefiisplem 45858 cnrefiisp 45859 meaiuninclem 46509 meaiuninc 46510 meaiininc 46516 carageniuncllem2 46551 caratheodorylem1 46555 caratheodorylem2 46556 caratheodory 46557 ovnsubadd 46601 hoidmv1le 46623 hoidmvle 46629 ovnhoilem2 46631 hspmbl 46658 ovnovollem3 46687 vonvolmbl 46690 smflimlem2 46801 smflimlem3 46802 smflimlem4 46803 smflim 46806 smflim2 46835 smflimsup 46857 otiunsndisjX 47308 |
| Copyright terms: Public domain | W3C validator |