| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2370. See cbviunvg 5001 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3214 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2796 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4953 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4953 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-iun 4953 |
| This theorem is referenced by: iunxdif2 5012 otiunsndisj 5475 onfununi 8287 oelim2 8536 marypha2lem2 9363 ttrclselem1 9654 ttrclselem2 9655 trcl 9657 r1om 10172 fictb 10173 cfsmolem 10199 cfsmo 10200 domtriomlem 10371 domtriom 10372 pwfseq 10593 wunex2 10667 wuncval2 10676 fsuppmapnn0fiubex 13933 s3iunsndisj 14910 ackbijnn 15770 smndex1basss 18808 smndex1mgm 18810 efgs1b 19642 ablfaclem3 19995 ptbasfi 23444 bcth3 25207 itg1climres 25591 suppovss 32577 hashunif 32704 gsumwrd2dccat 32980 fldextrspunlsplem 33641 bnj601 34883 cvmliftlem15 35258 neibastop2 36322 filnetlem4 36342 sstotbnd2 37741 heiborlem3 37780 heibor 37788 lcfr 41552 mapdrval 41614 corclrcl 43669 trclrelexplem 43673 dftrcl3 43682 cotrcltrcl 43687 dfrtrcl3 43695 corcltrcl 43701 cotrclrcl 43704 ssmapsn 45183 cnrefiisplem 45800 cnrefiisp 45801 meaiuninclem 46451 meaiuninc 46452 meaiininc 46458 carageniuncllem2 46493 caratheodorylem1 46497 caratheodorylem2 46498 caratheodory 46499 ovnsubadd 46543 hoidmv1le 46565 hoidmvle 46571 ovnhoilem2 46573 hspmbl 46600 ovnovollem3 46629 vonvolmbl 46632 smflimlem2 46743 smflimlem3 46744 smflimlem4 46745 smflim 46748 smflim2 46777 smflimsup 46799 otiunsndisjX 47253 |
| Copyright terms: Public domain | W3C validator |