![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2380. See cbviunvg 5065 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
2 | 1 | eleq2d 2830 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
3 | 2 | cbvrexvw 3244 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
4 | 3 | abbii 2812 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
5 | df-iun 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
6 | df-iun 5017 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
7 | 4, 5, 6 | 3eqtr4i 2778 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rex 3077 df-iun 5017 |
This theorem is referenced by: iunxdif2 5076 otiunsndisj 5539 onfununi 8397 oelim2 8651 marypha2lem2 9505 ttrclselem1 9794 ttrclselem2 9795 trcl 9797 r1om 10312 fictb 10313 cfsmolem 10339 cfsmo 10340 domtriomlem 10511 domtriom 10512 pwfseq 10733 wunex2 10807 wuncval2 10816 fsuppmapnn0fiubex 14043 s3iunsndisj 15017 ackbijnn 15876 smndex1basss 18940 smndex1mgm 18942 efgs1b 19778 ablfaclem3 20131 ptbasfi 23610 bcth3 25384 itg1climres 25769 suppovss 32697 hashunif 32813 bnj601 34896 cvmliftlem15 35266 neibastop2 36327 filnetlem4 36347 sstotbnd2 37734 heiborlem3 37773 heibor 37781 lcfr 41542 mapdrval 41604 corclrcl 43669 trclrelexplem 43673 dftrcl3 43682 cotrcltrcl 43687 dfrtrcl3 43695 corcltrcl 43701 cotrclrcl 43704 ssmapsn 45123 cnrefiisplem 45750 cnrefiisp 45751 meaiuninclem 46401 meaiuninc 46402 meaiininc 46408 carageniuncllem2 46443 caratheodorylem1 46447 caratheodorylem2 46448 caratheodory 46449 ovnsubadd 46493 hoidmv1le 46515 hoidmvle 46521 ovnhoilem2 46523 hspmbl 46550 ovnovollem3 46579 vonvolmbl 46582 smflimlem2 46693 smflimlem3 46694 smflimlem4 46695 smflim 46698 smflim2 46727 smflimsup 46749 otiunsndisjX 47194 |
Copyright terms: Public domain | W3C validator |