| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2370. See cbviunvg 5001 for a less restrictive version requiring more axioms. (Revised by GG, 14-Aug-2025.) |
| Ref | Expression |
|---|---|
| cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviunv.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 2 | 1 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 3 | 2 | cbvrexvw 3214 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 4 | 3 | abbii 2796 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 5 | df-iun 4953 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 6 | df-iun 4953 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 7 | 4, 5, 6 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 ∃wrex 3053 ∪ ciun 4951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rex 3054 df-iun 4953 |
| This theorem is referenced by: iunxdif2 5012 otiunsndisj 5475 onfununi 8287 oelim2 8536 marypha2lem2 9363 ttrclselem1 9654 ttrclselem2 9655 trcl 9657 r1om 10172 fictb 10173 cfsmolem 10199 cfsmo 10200 domtriomlem 10371 domtriom 10372 pwfseq 10593 wunex2 10667 wuncval2 10676 fsuppmapnn0fiubex 13933 s3iunsndisj 14910 ackbijnn 15770 smndex1basss 18814 smndex1mgm 18816 efgs1b 19650 ablfaclem3 20003 ptbasfi 23501 bcth3 25264 itg1climres 25648 suppovss 32654 hashunif 32781 gsumwrd2dccat 33050 fldextrspunlsplem 33661 bnj601 34903 cvmliftlem15 35278 neibastop2 36342 filnetlem4 36362 sstotbnd2 37761 heiborlem3 37800 heibor 37808 lcfr 41572 mapdrval 41634 corclrcl 43689 trclrelexplem 43693 dftrcl3 43702 cotrcltrcl 43707 dfrtrcl3 43715 corcltrcl 43721 cotrclrcl 43724 ssmapsn 45203 cnrefiisplem 45820 cnrefiisp 45821 meaiuninclem 46471 meaiuninc 46472 meaiininc 46478 carageniuncllem2 46513 caratheodorylem1 46517 caratheodorylem2 46518 caratheodory 46519 ovnsubadd 46563 hoidmv1le 46585 hoidmvle 46591 ovnhoilem2 46593 hspmbl 46620 ovnovollem3 46649 vonvolmbl 46652 smflimlem2 46763 smflimlem3 46764 smflimlem4 46765 smflim 46768 smflim2 46797 smflimsup 46819 otiunsndisjX 47273 |
| Copyright terms: Public domain | W3C validator |