Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbviunv | Structured version Visualization version GIF version |
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by NM, 15-Sep-2003.) Add disjoint variable condition to avoid ax-13 2372. See cbviunvg 4972 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
cbviunv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbviunv | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2907 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2907 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbviunv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbviun 4966 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-iun 4926 |
This theorem is referenced by: iunxdif2 4983 otiunsndisj 5434 onfununi 8172 oelim2 8426 marypha2lem2 9195 ttrclselem1 9483 ttrclselem2 9484 trcl 9486 r1om 10000 fictb 10001 cfsmolem 10026 cfsmo 10027 domtriomlem 10198 domtriom 10199 pwfseq 10420 wunex2 10494 wuncval2 10503 fsuppmapnn0fiubex 13712 s3iunsndisj 14679 ackbijnn 15540 smndex1basss 18544 smndex1mgm 18546 efgs1b 19342 ablfaclem3 19690 ptbasfi 22732 bcth3 24495 itg1climres 24879 suppovss 31017 hashunif 31126 bnj601 32900 cvmliftlem15 33260 neibastop2 34550 filnetlem4 34570 sstotbnd2 35932 heiborlem3 35971 heibor 35979 lcfr 39599 mapdrval 39661 corclrcl 41315 trclrelexplem 41319 dftrcl3 41328 cotrcltrcl 41333 dfrtrcl3 41341 corcltrcl 41347 cotrclrcl 41350 ssmapsn 42756 cnrefiisplem 43370 cnrefiisp 43371 meaiuninclem 44018 meaiuninc 44019 meaiininc 44025 carageniuncllem2 44060 caratheodorylem1 44064 caratheodorylem2 44065 caratheodory 44066 ovnsubadd 44110 hoidmv1le 44132 hoidmvle 44138 ovnhoilem2 44140 hspmbl 44167 ovnovollem3 44196 vonvolmbl 44199 smflimlem2 44307 smflimlem3 44308 smflimlem4 44309 smflim 44312 smflim2 44339 smflimsup 44361 otiunsndisjX 44771 |
Copyright terms: Public domain | W3C validator |