MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbviung Structured version   Visualization version   GIF version

Theorem cbviung 5002
Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbviun 5000 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
cbviung.1 𝑦𝐵
cbviung.2 𝑥𝐶
cbviung.3 (𝑥 = 𝑦𝐵 = 𝐶)
Assertion
Ref Expression
cbviung 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Distinct variable groups:   𝑦,𝐴   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)

Proof of Theorem cbviung
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cbviung.1 . . . . 5 𝑦𝐵
21nfcri 2883 . . . 4 𝑦 𝑧𝐵
3 cbviung.2 . . . . 5 𝑥𝐶
43nfcri 2883 . . . 4 𝑥 𝑧𝐶
5 cbviung.3 . . . . 5 (𝑥 = 𝑦𝐵 = 𝐶)
65eleq2d 2814 . . . 4 (𝑥 = 𝑦 → (𝑧𝐵𝑧𝐶))
72, 4, 6cbvrex 3337 . . 3 (∃𝑥𝐴 𝑧𝐵 ↔ ∃𝑦𝐴 𝑧𝐶)
87abbii 2796 . 2 {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵} = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
9 df-iun 4957 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
10 df-iun 4957 . 2 𝑦𝐴 𝐶 = {𝑧 ∣ ∃𝑦𝐴 𝑧𝐶}
118, 9, 103eqtr4i 2762 1 𝑥𝐴 𝐵 = 𝑦𝐴 𝐶
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  {cab 2707  wnfc 2876  wrex 3053   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2370  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-iun 4957
This theorem is referenced by:  cbviunvg  5006
  Copyright terms: Public domain W3C validator