| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbviung | Structured version Visualization version GIF version | ||
| Description: Rule used to change the bound variables in an indexed union, with the substitution specified implicitly by the hypothesis. Usage of this theorem is discouraged because it depends on ax-13 2370. See cbviun 5000 for a version with more disjoint variable conditions, but not requiring ax-13 2370. (Contributed by NM, 26-Mar-2006.) (Revised by Andrew Salmon, 25-Jul-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbviung.1 | ⊢ Ⅎ𝑦𝐵 |
| cbviung.2 | ⊢ Ⅎ𝑥𝐶 |
| cbviung.3 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| cbviung | ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbviung.1 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 2 | 1 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 3 | cbviung.2 | . . . . 5 ⊢ Ⅎ𝑥𝐶 | |
| 4 | 3 | nfcri 2883 | . . . 4 ⊢ Ⅎ𝑥 𝑧 ∈ 𝐶 |
| 5 | cbviung.3 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
| 6 | 5 | eleq2d 2814 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶)) |
| 7 | 2, 4, 6 | cbvrex 3337 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶) |
| 8 | 7 | abbii 2796 | . 2 ⊢ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} |
| 9 | df-iun 4957 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 10 | df-iun 4957 | . 2 ⊢ ∪ 𝑦 ∈ 𝐴 𝐶 = {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 ∈ 𝐶} | |
| 11 | 8, 9, 10 | 3eqtr4i 2762 | 1 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐴 𝐶 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 {cab 2707 Ⅎwnfc 2876 ∃wrex 3053 ∪ ciun 4955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2370 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-iun 4957 |
| This theorem is referenced by: cbviunvg 5006 |
| Copyright terms: Public domain | W3C validator |