Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem2 Structured version   Visualization version   GIF version

Theorem smfsuplem2 41812
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem2.m (𝜑𝑀 ∈ ℤ)
smfsuplem2.z 𝑍 = (ℤ𝑀)
smfsuplem2.s (𝜑𝑆 ∈ SAlg)
smfsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem2.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem2.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem2.8 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfsuplem2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑦,𝐷,𝑥   𝑛,𝐹,𝑦,𝑥   𝑦,𝑆   𝑛,𝑍,𝑦,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑥)   𝐷(𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsuplem2
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2969 . . 3 𝑛𝐹
2 smfsuplem2.z . . 3 𝑍 = (ℤ𝑀)
3 smfsuplem2.s . . 3 (𝜑𝑆 ∈ SAlg)
4 smfsuplem2.f . . 3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 eqid 2825 . . 3 (topGen‘ran (,)) = (topGen‘ran (,))
6 eqid 2825 . . 3 (SalGen‘(topGen‘ran (,))) = (SalGen‘(topGen‘ran (,)))
7 mnfxr 10414 . . . . 5 -∞ ∈ ℝ*
87a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
9 smfsuplem2.8 . . . 4 (𝜑𝐴 ∈ ℝ)
108, 9, 5, 6iocborel 41365 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (SalGen‘(topGen‘ran (,))))
111, 2, 3, 4, 5, 6, 10smfpimcc 41808 . 2 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))))
12 smfsuplem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1312adantr 474 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑀 ∈ ℤ)
143adantr 474 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑆 ∈ SAlg)
154adantr 474 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐹:𝑍⟶(SMblFn‘𝑆))
16 smfsuplem2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
17 fveq2 6433 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817dmeqd 5558 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
1918cbviinv 4780 . . . . . . . 8 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
2019a1i 11 . . . . . . 7 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
21 fveq2 6433 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
2221breq1d 4883 . . . . . . . . . 10 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2322ralbidv 3195 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2417fveq1d 6435 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
2524breq1d 4883 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2625cbvralv 3383 . . . . . . . . . 10 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
2726a1i 11 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2823, 27bitrd 271 . . . . . . . 8 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2928rexbidv 3262 . . . . . . 7 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
3020, 29cbvrabv2 40125 . . . . . 6 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
3116, 30eqtri 2849 . . . . 5 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
32 smfsuplem2.g . . . . . 6 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3321mpteq2dv 4968 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
3424cbvmptv 4973 . . . . . . . . . . 11 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
3534a1i 11 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3633, 35eqtrd 2861 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3736rneqd 5585 . . . . . . . 8 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3837supeq1d 8621 . . . . . . 7 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
3938cbvmptv 4973 . . . . . 6 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
4032, 39eqtri 2849 . . . . 5 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
419adantr 474 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐴 ∈ ℝ)
42 simprl 789 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → :𝑍𝑆)
43 simplrr 798 . . . . . 6 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))
4417cnveqd 5530 . . . . . . . . 9 (𝑛 = 𝑚(𝐹𝑛) = (𝐹𝑚))
4544imaeq1d 5706 . . . . . . . 8 (𝑛 = 𝑚 → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐹𝑚) “ (-∞(,]𝐴)))
46 fveq2 6433 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛) = (𝑚))
4746, 18ineq12d 4042 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝑚) ∩ dom (𝐹𝑚)))
4845, 47eqeq12d 2840 . . . . . . 7 (𝑛 = 𝑚 → (((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚))))
4948rspccva 3525 . . . . . 6 ((∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5043, 49sylancom 584 . . . . 5 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5113, 2, 14, 15, 31, 40, 41, 42, 50smfsuplem1 41811 . . . 4 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
5251ex 403 . . 3 (𝜑 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5352exlimdv 2034 . 2 (𝜑 → (∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5411, 53mpd 15 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386   = wceq 1658  wex 1880  wcel 2166  wral 3117  wrex 3118  {crab 3121  cin 3797   ciin 4741   class class class wbr 4873  cmpt 4952  ccnv 5341  dom cdm 5342  ran crn 5343  cima 5345  wf 6119  cfv 6123  (class class class)co 6905  supcsup 8615  cr 10251  -∞cmnf 10389  *cxr 10390   < clt 10391  cle 10392  cz 11704  cuz 11968  (,)cioo 12463  (,]cioc 12464  t crest 16434  topGenctg 16451  SAlgcsalg 41319  SalGencsalgen 41323  SMblFncsmblfn 41703
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-rep 4994  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209  ax-inf2 8815  ax-cc 9572  ax-ac2 9600  ax-cnex 10308  ax-resscn 10309  ax-1cn 10310  ax-icn 10311  ax-addcl 10312  ax-addrcl 10313  ax-mulcl 10314  ax-mulrcl 10315  ax-mulcom 10316  ax-addass 10317  ax-mulass 10318  ax-distr 10319  ax-i2m1 10320  ax-1ne0 10321  ax-1rid 10322  ax-rnegex 10323  ax-rrecex 10324  ax-cnre 10325  ax-pre-lttri 10326  ax-pre-lttrn 10327  ax-pre-ltadd 10328  ax-pre-mulgt0 10329  ax-pre-sup 10330
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-nel 3103  df-ral 3122  df-rex 3123  df-reu 3124  df-rmo 3125  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-int 4698  df-iun 4742  df-iin 4743  df-br 4874  df-opab 4936  df-mpt 4953  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-se 5302  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-pred 5920  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-isom 6132  df-riota 6866  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-1st 7428  df-2nd 7429  df-wrecs 7672  df-recs 7734  df-rdg 7772  df-1o 7826  df-oadd 7830  df-omul 7831  df-er 8009  df-map 8124  df-pm 8125  df-en 8223  df-dom 8224  df-sdom 8225  df-fin 8226  df-sup 8617  df-inf 8618  df-oi 8684  df-card 9078  df-acn 9081  df-ac 9252  df-pnf 10393  df-mnf 10394  df-xr 10395  df-ltxr 10396  df-le 10397  df-sub 10587  df-neg 10588  df-div 11010  df-nn 11351  df-n0 11619  df-z 11705  df-uz 11969  df-q 12072  df-rp 12113  df-ioo 12467  df-ioc 12468  df-ico 12469  df-fl 12888  df-rest 16436  df-topgen 16457  df-top 21069  df-bases 21121  df-salg 41320  df-salgen 41324  df-smblfn 41704
This theorem is referenced by:  smfsuplem3  41813
  Copyright terms: Public domain W3C validator