Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem2 Structured version   Visualization version   GIF version

Theorem smfsuplem2 43925
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem2.m (𝜑𝑀 ∈ ℤ)
smfsuplem2.z 𝑍 = (ℤ𝑀)
smfsuplem2.s (𝜑𝑆 ∈ SAlg)
smfsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem2.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem2.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem2.8 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfsuplem2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑦,𝐷,𝑥   𝑛,𝐹,𝑦,𝑥   𝑦,𝑆   𝑛,𝑍,𝑦,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑥)   𝐷(𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsuplem2
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2900 . . 3 𝑛𝐹
2 smfsuplem2.z . . 3 𝑍 = (ℤ𝑀)
3 smfsuplem2.s . . 3 (𝜑𝑆 ∈ SAlg)
4 smfsuplem2.f . . 3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 eqid 2739 . . 3 (topGen‘ran (,)) = (topGen‘ran (,))
6 eqid 2739 . . 3 (SalGen‘(topGen‘ran (,))) = (SalGen‘(topGen‘ran (,)))
7 mnfxr 10789 . . . . 5 -∞ ∈ ℝ*
87a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
9 smfsuplem2.8 . . . 4 (𝜑𝐴 ∈ ℝ)
108, 9, 5, 6iocborel 43478 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (SalGen‘(topGen‘ran (,))))
111, 2, 3, 4, 5, 6, 10smfpimcc 43921 . 2 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))))
12 smfsuplem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1312adantr 484 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑀 ∈ ℤ)
143adantr 484 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑆 ∈ SAlg)
154adantr 484 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐹:𝑍⟶(SMblFn‘𝑆))
16 smfsuplem2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
17 fveq2 6687 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817dmeqd 5758 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
1918cbviinv 4937 . . . . . . . 8 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
2019a1i 11 . . . . . . 7 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
21 fveq2 6687 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
2221breq1d 5050 . . . . . . . . . 10 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2322ralbidv 3110 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2417fveq1d 6689 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
2524breq1d 5050 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2625cbvralvw 3350 . . . . . . . . . 10 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
2726a1i 11 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2823, 27bitrd 282 . . . . . . . 8 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2928rexbidv 3208 . . . . . . 7 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
3020, 29cbvrabv2w 42256 . . . . . 6 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
3116, 30eqtri 2762 . . . . 5 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
32 smfsuplem2.g . . . . . 6 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3321mpteq2dv 5136 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
3424cbvmptv 5143 . . . . . . . . . . 11 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
3534a1i 11 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3633, 35eqtrd 2774 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3736rneqd 5791 . . . . . . . 8 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3837supeq1d 8996 . . . . . . 7 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
3938cbvmptv 5143 . . . . . 6 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
4032, 39eqtri 2762 . . . . 5 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
419adantr 484 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐴 ∈ ℝ)
42 simprl 771 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → :𝑍𝑆)
43 simplrr 778 . . . . . 6 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))
4417cnveqd 5728 . . . . . . . . 9 (𝑛 = 𝑚(𝐹𝑛) = (𝐹𝑚))
4544imaeq1d 5912 . . . . . . . 8 (𝑛 = 𝑚 → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐹𝑚) “ (-∞(,]𝐴)))
46 fveq2 6687 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛) = (𝑚))
4746, 18ineq12d 4114 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝑚) ∩ dom (𝐹𝑚)))
4845, 47eqeq12d 2755 . . . . . . 7 (𝑛 = 𝑚 → (((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚))))
4948rspccva 3528 . . . . . 6 ((∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5043, 49sylancom 591 . . . . 5 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5113, 2, 14, 15, 31, 40, 41, 42, 50smfsuplem1 43924 . . . 4 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
5251ex 416 . . 3 (𝜑 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5352exlimdv 1940 . 2 (𝜑 → (∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5411, 53mpd 15 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wex 1786  wcel 2114  wral 3054  wrex 3055  {crab 3058  cin 3852   ciin 4892   class class class wbr 5040  cmpt 5120  ccnv 5534  dom cdm 5535  ran crn 5536  cima 5538  wf 6346  cfv 6350  (class class class)co 7183  supcsup 8990  cr 10627  -∞cmnf 10764  *cxr 10765   < clt 10766  cle 10767  cz 12075  cuz 12337  (,)cioo 12834  (,]cioc 12835  t crest 16810  topGenctg 16827  SAlgcsalg 43432  SalGencsalgen 43436  SMblFncsmblfn 43816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5242  ax-pr 5306  ax-un 7492  ax-inf2 9190  ax-cc 9948  ax-ac2 9976  ax-cnex 10684  ax-resscn 10685  ax-1cn 10686  ax-icn 10687  ax-addcl 10688  ax-addrcl 10689  ax-mulcl 10690  ax-mulrcl 10691  ax-mulcom 10692  ax-addass 10693  ax-mulass 10694  ax-distr 10695  ax-i2m1 10696  ax-1ne0 10697  ax-1rid 10698  ax-rnegex 10699  ax-rrecex 10700  ax-cnre 10701  ax-pre-lttri 10702  ax-pre-lttrn 10703  ax-pre-ltadd 10704  ax-pre-mulgt0 10705  ax-pre-sup 10706
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4222  df-if 4425  df-pw 4500  df-sn 4527  df-pr 4529  df-tp 4531  df-op 4533  df-uni 4807  df-int 4847  df-iun 4893  df-iin 4894  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5439  df-eprel 5444  df-po 5452  df-so 5453  df-fr 5493  df-se 5494  df-we 5495  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-pred 6139  df-ord 6186  df-on 6187  df-lim 6188  df-suc 6189  df-iota 6308  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-isom 6359  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-om 7613  df-1st 7727  df-2nd 7728  df-wrecs 7989  df-recs 8050  df-rdg 8088  df-1o 8144  df-oadd 8148  df-omul 8149  df-er 8333  df-map 8452  df-pm 8453  df-en 8569  df-dom 8570  df-sdom 8571  df-fin 8572  df-sup 8992  df-inf 8993  df-oi 9060  df-card 9454  df-acn 9457  df-ac 9629  df-pnf 10768  df-mnf 10769  df-xr 10770  df-ltxr 10771  df-le 10772  df-sub 10963  df-neg 10964  df-div 11389  df-nn 11730  df-n0 11990  df-z 12076  df-uz 12338  df-q 12444  df-rp 12486  df-ioo 12838  df-ioc 12839  df-ico 12840  df-fl 13266  df-rest 16812  df-topgen 16833  df-top 21658  df-bases 21710  df-salg 43433  df-salgen 43437  df-smblfn 43817
This theorem is referenced by:  smfsuplem3  43926
  Copyright terms: Public domain W3C validator