Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfsuplem2 Structured version   Visualization version   GIF version

Theorem smfsuplem2 42949
Description: The supremum of a countable set of sigma-measurable functions is sigma-measurable. Proposition 121F (b) of [Fremlin1] p. 38 . (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
smfsuplem2.m (𝜑𝑀 ∈ ℤ)
smfsuplem2.z 𝑍 = (ℤ𝑀)
smfsuplem2.s (𝜑𝑆 ∈ SAlg)
smfsuplem2.f (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
smfsuplem2.d 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
smfsuplem2.g 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
smfsuplem2.8 (𝜑𝐴 ∈ ℝ)
Assertion
Ref Expression
smfsuplem2 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Distinct variable groups:   𝐴,𝑛,𝑦   𝑦,𝐷,𝑥   𝑛,𝐹,𝑦,𝑥   𝑦,𝑆   𝑛,𝑍,𝑦,𝑥   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐴(𝑥)   𝐷(𝑛)   𝑆(𝑥,𝑛)   𝐺(𝑥,𝑦,𝑛)   𝑀(𝑥,𝑦,𝑛)

Proof of Theorem smfsuplem2
Dummy variables 𝑚 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2981 . . 3 𝑛𝐹
2 smfsuplem2.z . . 3 𝑍 = (ℤ𝑀)
3 smfsuplem2.s . . 3 (𝜑𝑆 ∈ SAlg)
4 smfsuplem2.f . . 3 (𝜑𝐹:𝑍⟶(SMblFn‘𝑆))
5 eqid 2824 . . 3 (topGen‘ran (,)) = (topGen‘ran (,))
6 eqid 2824 . . 3 (SalGen‘(topGen‘ran (,))) = (SalGen‘(topGen‘ran (,)))
7 mnfxr 10690 . . . . 5 -∞ ∈ ℝ*
87a1i 11 . . . 4 (𝜑 → -∞ ∈ ℝ*)
9 smfsuplem2.8 . . . 4 (𝜑𝐴 ∈ ℝ)
108, 9, 5, 6iocborel 42502 . . 3 (𝜑 → (-∞(,]𝐴) ∈ (SalGen‘(topGen‘ran (,))))
111, 2, 3, 4, 5, 6, 10smfpimcc 42945 . 2 (𝜑 → ∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))))
12 smfsuplem2.m . . . . . 6 (𝜑𝑀 ∈ ℤ)
1312adantr 481 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑀 ∈ ℤ)
143adantr 481 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝑆 ∈ SAlg)
154adantr 481 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐹:𝑍⟶(SMblFn‘𝑆))
16 smfsuplem2.d . . . . . 6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
17 fveq2 6666 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
1817dmeqd 5772 . . . . . . . . 9 (𝑛 = 𝑚 → dom (𝐹𝑛) = dom (𝐹𝑚))
1918cbviinv 4962 . . . . . . . 8 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚)
2019a1i 11 . . . . . . 7 (𝑥 = 𝑤 𝑛𝑍 dom (𝐹𝑛) = 𝑚𝑍 dom (𝐹𝑚))
21 fveq2 6666 . . . . . . . . . . 11 (𝑥 = 𝑤 → ((𝐹𝑛)‘𝑥) = ((𝐹𝑛)‘𝑤))
2221breq1d 5072 . . . . . . . . . 10 (𝑥 = 𝑤 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2322ralbidv 3201 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦))
2417fveq1d 6668 . . . . . . . . . . . 12 (𝑛 = 𝑚 → ((𝐹𝑛)‘𝑤) = ((𝐹𝑚)‘𝑤))
2524breq1d 5072 . . . . . . . . . . 11 (𝑛 = 𝑚 → (((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2625cbvralv 3457 . . . . . . . . . 10 (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦)
2726a1i 11 . . . . . . . . 9 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑤) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2823, 27bitrd 280 . . . . . . . 8 (𝑥 = 𝑤 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
2928rexbidv 3301 . . . . . . 7 (𝑥 = 𝑤 → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦))
3020, 29cbvrabv2 41256 . . . . . 6 {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
3116, 30eqtri 2848 . . . . 5 𝐷 = {𝑤 𝑚𝑍 dom (𝐹𝑚) ∣ ∃𝑦 ∈ ℝ ∀𝑚𝑍 ((𝐹𝑚)‘𝑤) ≤ 𝑦}
32 smfsuplem2.g . . . . . 6 𝐺 = (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ))
3321mpteq2dv 5158 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)))
3424cbvmptv 5165 . . . . . . . . . . 11 (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤))
3534a1i 11 . . . . . . . . . 10 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑤)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3633, 35eqtrd 2860 . . . . . . . . 9 (𝑥 = 𝑤 → (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3736rneqd 5806 . . . . . . . 8 (𝑥 = 𝑤 → ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)) = ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)))
3837supeq1d 8902 . . . . . . 7 (𝑥 = 𝑤 → sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < ) = sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
3938cbvmptv 5165 . . . . . 6 (𝑥𝐷 ↦ sup(ran (𝑛𝑍 ↦ ((𝐹𝑛)‘𝑥)), ℝ, < )) = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
4032, 39eqtri 2848 . . . . 5 𝐺 = (𝑤𝐷 ↦ sup(ran (𝑚𝑍 ↦ ((𝐹𝑚)‘𝑤)), ℝ, < ))
419adantr 481 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → 𝐴 ∈ ℝ)
42 simprl 767 . . . . 5 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → :𝑍𝑆)
43 simplrr 774 . . . . . 6 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))
4417cnveqd 5744 . . . . . . . . 9 (𝑛 = 𝑚(𝐹𝑛) = (𝐹𝑚))
4544imaeq1d 5925 . . . . . . . 8 (𝑛 = 𝑚 → ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝐹𝑚) “ (-∞(,]𝐴)))
46 fveq2 6666 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑛) = (𝑚))
4746, 18ineq12d 4193 . . . . . . . 8 (𝑛 = 𝑚 → ((𝑛) ∩ dom (𝐹𝑛)) = ((𝑚) ∩ dom (𝐹𝑚)))
4845, 47eqeq12d 2840 . . . . . . 7 (𝑛 = 𝑚 → (((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ↔ ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚))))
4948rspccva 3625 . . . . . 6 ((∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5043, 49sylancom 588 . . . . 5 (((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) ∧ 𝑚𝑍) → ((𝐹𝑚) “ (-∞(,]𝐴)) = ((𝑚) ∩ dom (𝐹𝑚)))
5113, 2, 14, 15, 31, 40, 41, 42, 50smfsuplem1 42948 . . . 4 ((𝜑 ∧ (:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛)))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
5251ex 413 . . 3 (𝜑 → ((:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5352exlimdv 1927 . 2 (𝜑 → (∃(:𝑍𝑆 ∧ ∀𝑛𝑍 ((𝐹𝑛) “ (-∞(,]𝐴)) = ((𝑛) ∩ dom (𝐹𝑛))) → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷)))
5411, 53mpd 15 1 (𝜑 → (𝐺 “ (-∞(,]𝐴)) ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1530  wex 1773  wcel 2106  wral 3142  wrex 3143  {crab 3146  cin 3938   ciin 4917   class class class wbr 5062  cmpt 5142  ccnv 5552  dom cdm 5553  ran crn 5554  cima 5556  wf 6347  cfv 6351  (class class class)co 7151  supcsup 8896  cr 10528  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  cz 11973  cuz 12235  (,)cioo 12731  (,]cioc 12732  t crest 16686  topGenctg 16703  SAlgcsalg 42456  SalGencsalgen 42460  SMblFncsmblfn 42840
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2152  ax-12 2167  ax-13 2385  ax-ext 2796  ax-rep 5186  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454  ax-inf2 9096  ax-cc 9849  ax-ac2 9877  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606  ax-pre-sup 10607
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2615  df-eu 2649  df-clab 2803  df-cleq 2817  df-clel 2897  df-nfc 2967  df-ne 3021  df-nel 3128  df-ral 3147  df-rex 3148  df-reu 3149  df-rmo 3150  df-rab 3151  df-v 3501  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-int 4874  df-iun 4918  df-iin 4919  df-br 5063  df-opab 5125  df-mpt 5143  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-se 5513  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-pred 6145  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-isom 6360  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7572  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-omul 8101  df-er 8282  df-map 8401  df-pm 8402  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-sup 8898  df-inf 8899  df-oi 8966  df-card 9360  df-acn 9363  df-ac 9534  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-div 11290  df-nn 11631  df-n0 11890  df-z 11974  df-uz 12236  df-q 12341  df-rp 12383  df-ioo 12735  df-ioc 12736  df-ico 12737  df-fl 13155  df-rest 16688  df-topgen 16709  df-top 21418  df-bases 21470  df-salg 42457  df-salgen 42461  df-smblfn 42841
This theorem is referenced by:  smfsuplem3  42950
  Copyright terms: Public domain W3C validator