| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvralsvwOLDOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of cbvralsvw 3300 as of 8-Mar-2025. (Contributed by NM, 20-Nov-2005.) Avoid ax-13 2375. (Revised by GG, 10-Jan-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralsvwOLDOLD | ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1913 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
| 2 | nfs1v 2155 | . . 3 ⊢ Ⅎ𝑥[𝑧 / 𝑥]𝜑 | |
| 3 | sbequ12 2250 | . . 3 ⊢ (𝑥 = 𝑧 → (𝜑 ↔ [𝑧 / 𝑥]𝜑)) | |
| 4 | 1, 2, 3 | cbvralw 3289 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑) |
| 5 | nfv 1913 | . . 3 ⊢ Ⅎ𝑦[𝑧 / 𝑥]𝜑 | |
| 6 | nfv 1913 | . . 3 ⊢ Ⅎ𝑧[𝑦 / 𝑥]𝜑 | |
| 7 | sbequ 2082 | . . 3 ⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | |
| 8 | 5, 6, 7 | cbvralw 3289 | . 2 ⊢ (∀𝑧 ∈ 𝐴 [𝑧 / 𝑥]𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| 9 | 4, 8 | bitri 275 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑦 ∈ 𝐴 [𝑦 / 𝑥]𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 [wsb 2063 ∀wral 3050 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-sb 2064 df-clel 2808 df-nfc 2884 df-ral 3051 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |