![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvreuv | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3396 for a version without ax-13 2366, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2366. Use the weaker cbvreuvw 3396 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrmov.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvreuv | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1909 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1909 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvrmov.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvreu 3420 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∃!wreu 3370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-10 2129 ax-11 2146 ax-12 2166 ax-13 2366 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clel 2805 df-reu 3373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |