MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuv Structured version   Visualization version   GIF version

Theorem cbvreuv 3390
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3368 for a version without ax-13 2372, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvreuvw 3368 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvrmov.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuv (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1915 . 2 𝑦𝜑
2 nfv 1915 . 2 𝑥𝜓
3 cbvrmov.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvreu 3387 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  ∃!wreu 3344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-10 2144  ax-11 2160  ax-12 2180  ax-13 2372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clel 2806  df-reu 3347
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator