Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvreuv | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3353 for a version without ax-13 2373, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2373. Use the weaker cbvreuvw 3353 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvralv.1 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvreuv | ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1921 | . 2 ⊢ Ⅎ𝑦𝜑 | |
2 | nfv 1921 | . 2 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvralv.1 | . 2 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvreu 3348 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∃!wreu 3056 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-10 2145 ax-11 2162 ax-12 2179 ax-13 2373 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clel 2812 df-reu 3061 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |