MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cbvreuv Structured version   Visualization version   GIF version

Theorem cbvreuv 3379
Description: Change the bound variable of a restricted unique existential quantifier using implicit substitution. See cbvreuvw 3375 for a version without ax-13 2372, but extra disjoint variables. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker cbvreuvw 3375 when possible. (Contributed by NM, 5-Apr-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) (New usage is discouraged.)
Hypothesis
Ref Expression
cbvralv.1 (𝑥 = 𝑦 → (𝜑𝜓))
Assertion
Ref Expression
cbvreuv (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Distinct variable groups:   𝑥,𝐴   𝑦,𝐴   𝜑,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem cbvreuv
StepHypRef Expression
1 nfv 1918 . 2 𝑦𝜑
2 nfv 1918 . 2 𝑥𝜓
3 cbvralv.1 . 2 (𝑥 = 𝑦 → (𝜑𝜓))
41, 2, 3cbvreu 3370 1 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  ∃!wreu 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-10 2139  ax-11 2156  ax-12 2173  ax-13 2372
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clel 2817  df-reu 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator