| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑧(𝑥 ∈ 𝐴 ∧ 𝜑) | 
| 2 | 1 | sb8eu 2600 | . . 3
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑧[𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 3 |  | sban 2080 | . . . 4
⊢ ([𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) | 
| 4 | 3 | eubii 2585 | . . 3
⊢
(∃!𝑧[𝑧 / 𝑥](𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) | 
| 5 |  | clelsb1 2868 | . . . . . 6
⊢ ([𝑧 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑧 ∈ 𝐴) | 
| 6 | 5 | anbi1i 624 | . . . . 5
⊢ (([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) | 
| 7 | 6 | eubii 2585 | . . . 4
⊢
(∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑)) | 
| 8 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑦 𝑧 ∈ 𝐴 | 
| 9 |  | cbvrmo.1 | . . . . . . 7
⊢
Ⅎ𝑦𝜑 | 
| 10 | 9 | nfsb 2528 | . . . . . 6
⊢
Ⅎ𝑦[𝑧 / 𝑥]𝜑 | 
| 11 | 8, 10 | nfan 1899 | . . . . 5
⊢
Ⅎ𝑦(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) | 
| 12 |  | nfv 1914 | . . . . 5
⊢
Ⅎ𝑧(𝑦 ∈ 𝐴 ∧ 𝜓) | 
| 13 |  | eleq1w 2824 | . . . . . 6
⊢ (𝑧 = 𝑦 → (𝑧 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 14 |  | sbequ 2083 | . . . . . . 7
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ [𝑦 / 𝑥]𝜑)) | 
| 15 |  | cbvrmo.2 | . . . . . . . 8
⊢
Ⅎ𝑥𝜓 | 
| 16 |  | cbvrmo.3 | . . . . . . . 8
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | 
| 17 | 15, 16 | sbie 2507 | . . . . . . 7
⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜓) | 
| 18 | 14, 17 | bitrdi 287 | . . . . . 6
⊢ (𝑧 = 𝑦 → ([𝑧 / 𝑥]𝜑 ↔ 𝜓)) | 
| 19 | 13, 18 | anbi12d 632 | . . . . 5
⊢ (𝑧 = 𝑦 → ((𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ (𝑦 ∈ 𝐴 ∧ 𝜓))) | 
| 20 | 11, 12, 19 | cbveu 2607 | . . . 4
⊢
(∃!𝑧(𝑧 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 21 | 7, 20 | bitri 275 | . . 3
⊢
(∃!𝑧([𝑧 / 𝑥]𝑥 ∈ 𝐴 ∧ [𝑧 / 𝑥]𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 22 | 2, 4, 21 | 3bitri 297 | . 2
⊢
(∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 23 |  | df-reu 3381 | . 2
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 24 |  | df-reu 3381 | . 2
⊢
(∃!𝑦 ∈
𝐴 𝜓 ↔ ∃!𝑦(𝑦 ∈ 𝐴 ∧ 𝜓)) | 
| 25 | 22, 23, 24 | 3bitr4i 303 | 1
⊢
(∃!𝑥 ∈
𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |