MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmod Structured version   Visualization version   GIF version

Theorem nfrmod 3260
Description: Deduction version of nfrmo 3262. (Contributed by NM, 17-Jun-2017.)
Hypotheses
Ref Expression
nfreud.1 𝑦𝜑
nfreud.2 (𝜑𝑥𝐴)
nfreud.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrmod (𝜑 → Ⅎ𝑥∃*𝑦𝐴 𝜓)

Proof of Theorem nfrmod
StepHypRef Expression
1 df-rmo 3063 . 2 (∃*𝑦𝐴 𝜓 ↔ ∃*𝑦(𝑦𝐴𝜓))
2 nfreud.1 . . 3 𝑦𝜑
3 nfcvf 2931 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
43adantl 473 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
5 nfreud.2 . . . . . 6 (𝜑𝑥𝐴)
65adantr 472 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
74, 6nfeld 2916 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
8 nfreud.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
98adantr 472 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
107, 9nfand 1996 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
112, 10nfmod2 2577 . 2 (𝜑 → Ⅎ𝑥∃*𝑦(𝑦𝐴𝜓))
121, 11nfxfrd 1949 1 (𝜑 → Ⅎ𝑥∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1650  wnf 1878  wcel 2155  ∃*wmo 2563  wnfc 2894  ∃*wrmo 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-tru 1656  df-ex 1875  df-nf 1879  df-mo 2565  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rmo 3063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator