MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmod Structured version   Visualization version   GIF version

Theorem nfrmod 3429
Description: Deduction version of nfrmo 3431. Usage of this theorem is discouraged because it depends on ax-13 2375. (Contributed by NM, 17-Jun-2017.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfrmod.1 𝑦𝜑
nfrmod.2 (𝜑𝑥𝐴)
nfrmod.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrmod (𝜑 → Ⅎ𝑥∃*𝑦𝐴 𝜓)

Proof of Theorem nfrmod
StepHypRef Expression
1 df-rmo 3378 . 2 (∃*𝑦𝐴 𝜓 ↔ ∃*𝑦(𝑦𝐴𝜓))
2 nfrmod.1 . . 3 𝑦𝜑
3 nfcvf 2930 . . . . . 6 (¬ ∀𝑥 𝑥 = 𝑦𝑥𝑦)
43adantl 481 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝑦)
5 nfrmod.2 . . . . . 6 (𝜑𝑥𝐴)
65adantr 480 . . . . 5 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → 𝑥𝐴)
74, 6nfeld 2915 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦𝐴)
8 nfrmod.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
98adantr 480 . . . 4 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓)
107, 9nfand 1895 . . 3 ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦𝐴𝜓))
112, 10nfmod2 2556 . 2 (𝜑 → Ⅎ𝑥∃*𝑦(𝑦𝐴𝜓))
121, 11nfxfrd 1851 1 (𝜑 → Ⅎ𝑥∃*𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  wal 1535  wnf 1780  wcel 2106  ∃*wmo 2536  wnfc 2888  ∃*wrmo 3377
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-13 2375  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-mo 2538  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rmo 3378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator