| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrexcsf | Structured version Visualization version GIF version | ||
| Description: A more general version of cbvrexf 3345 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvralcsf.1 | ⊢ Ⅎ𝑦𝐴 |
| cbvralcsf.2 | ⊢ Ⅎ𝑥𝐵 |
| cbvralcsf.3 | ⊢ Ⅎ𝑦𝜑 |
| cbvralcsf.4 | ⊢ Ⅎ𝑥𝜓 |
| cbvralcsf.5 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
| cbvralcsf.6 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrexcsf | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvralcsf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 2 | cbvralcsf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
| 3 | cbvralcsf.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
| 4 | 3 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
| 5 | cbvralcsf.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
| 6 | 5 | nfn 1857 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
| 7 | cbvralcsf.5 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
| 8 | cbvralcsf.6 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 9 | 8 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 10 | 1, 2, 4, 6, 7, 9 | cbvralcsf 3921 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
| 11 | 10 | notbii 320 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
| 12 | dfrex2 3064 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
| 13 | dfrex2 3064 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
| 14 | 11, 12, 13 | 3bitr4i 303 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 Ⅎwnf 1783 Ⅎwnfc 2884 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-sbc 3771 df-csb 3880 |
| This theorem is referenced by: cbvrexv2 3926 |
| Copyright terms: Public domain | W3C validator |