Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvrexcsf | Structured version Visualization version GIF version |
Description: A more general version of cbvrexf 3362 that has no distinct variable restrictions. Changes bound variables using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2372. (Contributed by Andrew Salmon, 13-Jul-2011.) (Proof shortened by Mario Carneiro, 7-Dec-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvralcsf.1 | ⊢ Ⅎ𝑦𝐴 |
cbvralcsf.2 | ⊢ Ⅎ𝑥𝐵 |
cbvralcsf.3 | ⊢ Ⅎ𝑦𝜑 |
cbvralcsf.4 | ⊢ Ⅎ𝑥𝜓 |
cbvralcsf.5 | ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) |
cbvralcsf.6 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrexcsf | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvralcsf.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
2 | cbvralcsf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | cbvralcsf.3 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
4 | 3 | nfn 1861 | . . . 4 ⊢ Ⅎ𝑦 ¬ 𝜑 |
5 | cbvralcsf.4 | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
6 | 5 | nfn 1861 | . . . 4 ⊢ Ⅎ𝑥 ¬ 𝜓 |
7 | cbvralcsf.5 | . . . 4 ⊢ (𝑥 = 𝑦 → 𝐴 = 𝐵) | |
8 | cbvralcsf.6 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
9 | 8 | notbid 317 | . . . 4 ⊢ (𝑥 = 𝑦 → (¬ 𝜑 ↔ ¬ 𝜓)) |
10 | 1, 2, 4, 6, 7, 9 | cbvralcsf 3873 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
11 | 10 | notbii 319 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) |
12 | dfrex2 3166 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜑) | |
13 | dfrex2 3166 | . 2 ⊢ (∃𝑦 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜓) | |
14 | 11, 12, 13 | 3bitr4i 302 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1787 Ⅎwnfc 2886 ∀wral 3063 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-sbc 3712 df-csb 3829 |
This theorem is referenced by: cbvrexv2 3878 |
Copyright terms: Public domain | W3C validator |