![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rspc2vd | Structured version Visualization version GIF version |
Description: Deduction version of 2-variable restricted specialization, using implicit substitution. Notice that the class 𝐷 for the second set variable 𝑦 may depend on the first set variable 𝑥. (Contributed by AV, 29-Mar-2021.) |
Ref | Expression |
---|---|
rspc2vd.a | ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) |
rspc2vd.b | ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) |
rspc2vd.c | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
rspc2vd.d | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) |
rspc2vd.e | ⊢ (𝜑 → 𝐵 ∈ 𝐸) |
Ref | Expression |
---|---|
rspc2vd | ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rspc2vd.e | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝐸) | |
2 | rspc2vd.c | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
3 | rspc2vd.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐸) | |
4 | 2, 3 | csbied 3930 | . . 3 ⊢ (𝜑 → ⦋𝐴 / 𝑥⦌𝐷 = 𝐸) |
5 | 1, 4 | eleqtrrd 2829 | . 2 ⊢ (𝜑 → 𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐷) |
6 | nfcsb1v 3917 | . . . . 5 ⊢ Ⅎ𝑥⦋𝐴 / 𝑥⦌𝐷 | |
7 | nfv 1910 | . . . . 5 ⊢ Ⅎ𝑥𝜒 | |
8 | 6, 7 | nfralw 3299 | . . . 4 ⊢ Ⅎ𝑥∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒 |
9 | csbeq1a 3906 | . . . . 5 ⊢ (𝑥 = 𝐴 → 𝐷 = ⦋𝐴 / 𝑥⦌𝐷) | |
10 | rspc2vd.a | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜃 ↔ 𝜒)) | |
11 | 9, 10 | raleqbidv 3331 | . . . 4 ⊢ (𝑥 = 𝐴 → (∀𝑦 ∈ 𝐷 𝜃 ↔ ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
12 | 8, 11 | rspc 3596 | . . 3 ⊢ (𝐴 ∈ 𝐶 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
13 | 2, 12 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → ∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒)) |
14 | rspc2vd.b | . . 3 ⊢ (𝑦 = 𝐵 → (𝜒 ↔ 𝜓)) | |
15 | 14 | rspcv 3604 | . 2 ⊢ (𝐵 ∈ ⦋𝐴 / 𝑥⦌𝐷 → (∀𝑦 ∈ ⦋ 𝐴 / 𝑥⦌𝐷𝜒 → 𝜓)) |
16 | 5, 13, 15 | sylsyld 61 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐶 ∀𝑦 ∈ 𝐷 𝜃 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 ∀wral 3051 ⦋csb 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-v 3465 df-sbc 3777 df-csb 3893 |
This theorem is referenced by: insubm 18801 frcond1 30194 frgrwopreglem4a 30238 ismntd 32855 dfmgc2lem 32866 urpropd 33099 isthincd2lem1 48382 |
Copyright terms: Public domain | W3C validator |