![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cbvrmo | Structured version Visualization version GIF version |
Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2375. Use the weaker cbvrmow 3407, cbvrmovw 3401 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cbvrmo.1 | ⊢ Ⅎ𝑦𝜑 |
cbvrmo.2 | ⊢ Ⅎ𝑥𝜓 |
cbvrmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
cbvrmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cbvrmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
2 | cbvrmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | cbvrmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
4 | 1, 2, 3 | cbvrex 3361 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
5 | 1, 2, 3 | cbvreu 3425 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) |
7 | rmo5 3398 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
8 | rmo5 3398 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) | |
9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1780 ∃wrex 3068 ∃!wreu 3376 ∃*wrmo 3377 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-10 2139 ax-11 2155 ax-12 2175 ax-13 2375 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 |
This theorem is referenced by: cbvrmov 3427 |
Copyright terms: Public domain | W3C validator |