| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cbvrmo | Structured version Visualization version GIF version | ||
| Description: Change the bound variable of a restricted at-most-one quantifier using implicit substitution. Usage of this theorem is discouraged because it depends on ax-13 2377. Use the weaker cbvrmow 3393, cbvrmovw 3387 when possible. (Contributed by NM, 16-Jun-2017.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cbvrmo.1 | ⊢ Ⅎ𝑦𝜑 |
| cbvrmo.2 | ⊢ Ⅎ𝑥𝜓 |
| cbvrmo.3 | ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| cbvrmo | ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cbvrmo.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 2 | cbvrmo.2 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
| 3 | cbvrmo.3 | . . . 4 ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) | |
| 4 | 1, 2, 3 | cbvrex 3347 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦 ∈ 𝐴 𝜓) |
| 5 | 1, 2, 3 | cbvreu 3412 | . . 3 ⊢ (∃!𝑥 ∈ 𝐴 𝜑 ↔ ∃!𝑦 ∈ 𝐴 𝜓) |
| 6 | 4, 5 | imbi12i 350 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑) ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) |
| 7 | rmo5 3384 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ (∃𝑥 ∈ 𝐴 𝜑 → ∃!𝑥 ∈ 𝐴 𝜑)) | |
| 8 | rmo5 3384 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜓 ↔ (∃𝑦 ∈ 𝐴 𝜓 → ∃!𝑦 ∈ 𝐴 𝜓)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∃wrex 3061 ∃!wreu 3362 ∃*wrmo 3363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 ax-13 2377 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 |
| This theorem is referenced by: cbvrmov 3414 |
| Copyright terms: Public domain | W3C validator |