MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Visualization version   GIF version

Theorem fimaxre3 11851
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem fimaxre3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3183 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → ∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵))
2 eleq1 2826 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ))
32biimparc 479 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
43rexlimivw 3210 . . . . . 6 (∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
51, 4syl 17 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
65ex 412 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑦𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
76abssdv 3998 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ)
8 abrexfi 9049 . . 3 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin)
9 fimaxre2 11850 . . 3 (({𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
107, 8, 9syl2anr 596 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
11 r19.23v 3207 . . . . . . 7 (∀𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ (∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1211albii 1823 . . . . . 6 (∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
13 ralcom4 3161 . . . . . 6 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥))
14 eqeq1 2742 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
1514rexbidv 3225 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝐴 𝑧 = 𝐵 ↔ ∃𝑦𝐴 𝑤 = 𝐵))
1615ralab 3621 . . . . . 6 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1712, 13, 163bitr4i 302 . . . . 5 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
18 nfv 1918 . . . . . . . 8 𝑤 𝐵𝑥
19 breq1 5073 . . . . . . . 8 (𝑤 = 𝐵 → (𝑤𝑥𝐵𝑥))
2018, 19ceqsalg 3454 . . . . . . 7 (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
2120ralimi 3086 . . . . . 6 (∀𝑦𝐴 𝐵 ∈ ℝ → ∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
22 ralbi 3092 . . . . . 6 (∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥) → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2321, 22syl 17 . . . . 5 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2417, 23bitr3id 284 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑦𝐴 𝐵𝑥))
2524rexbidv 3225 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2625adantl 481 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2710, 26mpbid 231 1 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wal 1537   = wceq 1539  wcel 2108  {cab 2715  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  Fincfn 8691  cr 10801  cle 10941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-addrcl 10863  ax-rnegex 10873  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-1st 7804  df-2nd 7805  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946
This theorem is referenced by:  fsequb  13623  fsequb2  13624  caubnd  14998  limsupgre  15118  vdwnnlem3  16626  cnheibor  24024  bndth  24027  ovoliunlem2  24572  dchrisum  26545  ssfiunibd  42738  fimaxre4  42831  uzublem  42860  fourierdlem70  43607  fourierdlem71  43608  fourierdlem80  43617
  Copyright terms: Public domain W3C validator