| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimaxre3 | Structured version Visualization version GIF version | ||
| Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| fimaxre3 | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29 3095 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵)) | |
| 2 | eleq1 2819 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
| 3 | 2 | biimparc 479 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 4 | 3 | rexlimivw 3129 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
| 7 | 6 | abssdv 4014 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
| 8 | abrexfi 9236 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) | |
| 9 | fimaxre2 12067 | . . 3 ⊢ (({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) | |
| 10 | 7, 8, 9 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
| 11 | r19.23v 3159 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
| 12 | 11 | albii 1820 | . . . . . 6 ⊢ (∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
| 13 | ralcom4 3258 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
| 14 | eqeq1 2735 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | |
| 15 | 14 | rexbidv 3156 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑤 = 𝐵)) |
| 16 | 15 | ralab 3647 | . . . . . 6 ⊢ (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
| 17 | 12, 13, 16 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
| 18 | nfv 1915 | . . . . . . . 8 ⊢ Ⅎ𝑤 𝐵 ≤ 𝑥 | |
| 19 | breq1 5092 | . . . . . . . 8 ⊢ (𝑤 = 𝐵 → (𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥)) | |
| 20 | 18, 19 | ceqsalg 3472 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
| 21 | 20 | ralimi 3069 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
| 22 | ralbi 3087 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 24 | 17, 23 | bitr3id 285 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 25 | 24 | rexbidv 3156 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 26 | 25 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 27 | 10, 26 | mpbid 232 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 ⊆ wss 3897 class class class wbr 5089 Fincfn 8869 ℝcr 11005 ≤ cle 11147 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-resscn 11063 ax-1cn 11064 ax-addrcl 11067 ax-rnegex 11077 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-om 7797 df-1st 7921 df-2nd 7922 df-1o 8385 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 |
| This theorem is referenced by: fsequb 13882 fsequb2 13883 caubnd 15266 limsupgre 15388 vdwnnlem3 16909 cnheibor 24881 bndth 24884 ovoliunlem2 25431 dchrisum 27430 ssfiunibd 45409 fimaxre4 45498 uzublem 45527 fourierdlem70 46273 fourierdlem71 46274 fourierdlem80 46283 |
| Copyright terms: Public domain | W3C validator |