| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimaxre3 | Structured version Visualization version GIF version | ||
| Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
| Ref | Expression |
|---|---|
| fimaxre3 | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29 3114 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵)) | |
| 2 | eleq1 2829 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
| 3 | 2 | biimparc 479 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 4 | 3 | rexlimivw 3151 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 5 | 1, 4 | syl 17 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
| 6 | 5 | ex 412 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
| 7 | 6 | abssdv 4068 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
| 8 | abrexfi 9392 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) | |
| 9 | fimaxre2 12213 | . . 3 ⊢ (({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) | |
| 10 | 7, 8, 9 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
| 11 | r19.23v 3183 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
| 12 | 11 | albii 1819 | . . . . . 6 ⊢ (∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
| 13 | ralcom4 3286 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
| 14 | eqeq1 2741 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | |
| 15 | 14 | rexbidv 3179 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑤 = 𝐵)) |
| 16 | 15 | ralab 3697 | . . . . . 6 ⊢ (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
| 17 | 12, 13, 16 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
| 18 | nfv 1914 | . . . . . . . 8 ⊢ Ⅎ𝑤 𝐵 ≤ 𝑥 | |
| 19 | breq1 5146 | . . . . . . . 8 ⊢ (𝑤 = 𝐵 → (𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥)) | |
| 20 | 18, 19 | ceqsalg 3517 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
| 21 | 20 | ralimi 3083 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
| 22 | ralbi 3103 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) | |
| 23 | 21, 22 | syl 17 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 24 | 17, 23 | bitr3id 285 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 25 | 24 | rexbidv 3179 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 26 | 25 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
| 27 | 10, 26 | mpbid 232 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 class class class wbr 5143 Fincfn 8985 ℝcr 11154 ≤ cle 11296 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-resscn 11212 ax-1cn 11213 ax-addrcl 11216 ax-rnegex 11226 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-om 7888 df-1st 8014 df-2nd 8015 df-1o 8506 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 |
| This theorem is referenced by: fsequb 14016 fsequb2 14017 caubnd 15397 limsupgre 15517 vdwnnlem3 17035 cnheibor 24987 bndth 24990 ovoliunlem2 25538 dchrisum 27536 ssfiunibd 45321 fimaxre4 45412 uzublem 45441 fourierdlem70 46191 fourierdlem71 46192 fourierdlem80 46201 |
| Copyright terms: Public domain | W3C validator |