MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Visualization version   GIF version

Theorem fimaxre3 12129
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem fimaxre3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3094 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → ∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵))
2 eleq1 2816 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ))
32biimparc 479 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
43rexlimivw 3130 . . . . . 6 (∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
51, 4syl 17 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
65ex 412 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑦𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
76abssdv 4031 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ)
8 abrexfi 9303 . . 3 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin)
9 fimaxre2 12128 . . 3 (({𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
107, 8, 9syl2anr 597 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
11 r19.23v 3161 . . . . . . 7 (∀𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ (∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1211albii 1819 . . . . . 6 (∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
13 ralcom4 3263 . . . . . 6 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥))
14 eqeq1 2733 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
1514rexbidv 3157 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝐴 𝑧 = 𝐵 ↔ ∃𝑦𝐴 𝑤 = 𝐵))
1615ralab 3664 . . . . . 6 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1712, 13, 163bitr4i 303 . . . . 5 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
18 nfv 1914 . . . . . . . 8 𝑤 𝐵𝑥
19 breq1 5110 . . . . . . . 8 (𝑤 = 𝐵 → (𝑤𝑥𝐵𝑥))
2018, 19ceqsalg 3483 . . . . . . 7 (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
2120ralimi 3066 . . . . . 6 (∀𝑦𝐴 𝐵 ∈ ℝ → ∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
22 ralbi 3085 . . . . . 6 (∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥) → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2321, 22syl 17 . . . . 5 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2417, 23bitr3id 285 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑦𝐴 𝐵𝑥))
2524rexbidv 3157 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2625adantl 481 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2710, 26mpbid 232 1 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3914   class class class wbr 5107  Fincfn 8918  cr 11067  cle 11209
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-addrcl 11129  ax-rnegex 11139  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-om 7843  df-1st 7968  df-2nd 7969  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214
This theorem is referenced by:  fsequb  13940  fsequb2  13941  caubnd  15325  limsupgre  15447  vdwnnlem3  16968  cnheibor  24854  bndth  24857  ovoliunlem2  25404  dchrisum  27403  ssfiunibd  45307  fimaxre4  45397  uzublem  45426  fourierdlem70  46174  fourierdlem71  46175  fourierdlem80  46184
  Copyright terms: Public domain W3C validator