![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre3 | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
fimaxre3 | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3120 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵)) | |
2 | eleq1 2832 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
3 | 2 | biimparc 479 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
4 | 3 | rexlimivw 3157 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
6 | 5 | ex 412 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
7 | 6 | abssdv 4091 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
8 | abrexfi 9422 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) | |
9 | fimaxre2 12240 | . . 3 ⊢ (({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) | |
10 | 7, 8, 9 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
11 | r19.23v 3189 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
12 | 11 | albii 1817 | . . . . . 6 ⊢ (∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
13 | ralcom4 3292 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
14 | eqeq1 2744 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | |
15 | 14 | rexbidv 3185 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑤 = 𝐵)) |
16 | 15 | ralab 3713 | . . . . . 6 ⊢ (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
17 | 12, 13, 16 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
18 | nfv 1913 | . . . . . . . 8 ⊢ Ⅎ𝑤 𝐵 ≤ 𝑥 | |
19 | breq1 5169 | . . . . . . . 8 ⊢ (𝑤 = 𝐵 → (𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥)) | |
20 | 18, 19 | ceqsalg 3525 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
21 | 20 | ralimi 3089 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
22 | ralbi 3109 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
24 | 17, 23 | bitr3id 285 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
25 | 24 | rexbidv 3185 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
26 | 25 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
27 | 10, 26 | mpbid 232 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2108 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 class class class wbr 5166 Fincfn 9003 ℝcr 11183 ≤ cle 11325 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-addrcl 11245 ax-rnegex 11255 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-om 7904 df-1st 8030 df-2nd 8031 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 |
This theorem is referenced by: fsequb 14026 fsequb2 14027 caubnd 15407 limsupgre 15527 vdwnnlem3 17044 cnheibor 25006 bndth 25009 ovoliunlem2 25557 dchrisum 27554 ssfiunibd 45224 fimaxre4 45316 uzublem 45345 fourierdlem70 46097 fourierdlem71 46098 fourierdlem80 46107 |
Copyright terms: Public domain | W3C validator |