MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Visualization version   GIF version

Theorem fimaxre3 11441
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem fimaxre3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3220 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → ∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵))
2 eleq1 2872 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ))
32biimparc 480 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
43rexlimivw 3247 . . . . . 6 (∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
51, 4syl 17 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
65ex 413 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑦𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
76abssdv 3972 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ)
8 abrexfi 8677 . . 3 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin)
9 fimaxre2 11440 . . 3 (({𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
107, 8, 9syl2anr 596 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
11 r19.23v 3244 . . . . . . 7 (∀𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ (∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1211albii 1805 . . . . . 6 (∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
13 ralcom4 3201 . . . . . 6 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥))
14 eqeq1 2801 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
1514rexbidv 3262 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝐴 𝑧 = 𝐵 ↔ ∃𝑦𝐴 𝑤 = 𝐵))
1615ralab 3625 . . . . . 6 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1712, 13, 163bitr4i 304 . . . . 5 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
18 nfv 1896 . . . . . . . 8 𝑤 𝐵𝑥
19 breq1 4971 . . . . . . . 8 (𝑤 = 𝐵 → (𝑤𝑥𝐵𝑥))
2018, 19ceqsalg 3475 . . . . . . 7 (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
2120ralimi 3129 . . . . . 6 (∀𝑦𝐴 𝐵 ∈ ℝ → ∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
22 ralbi 3136 . . . . . 6 (∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥) → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2321, 22syl 17 . . . . 5 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2417, 23syl5bbr 286 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑦𝐴 𝐵𝑥))
2524rexbidv 3262 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2625adantl 482 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2710, 26mpbid 233 1 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wal 1523   = wceq 1525  wcel 2083  {cab 2777  wral 3107  wrex 3108  wss 3865   class class class wbr 4968  Fincfn 8364  cr 10389  cle 10529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326  ax-resscn 10447  ax-1cn 10448  ax-addrcl 10451  ax-rnegex 10461  ax-cnre 10463  ax-pre-lttri 10464  ax-pre-lttrn 10465
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-sdom 8367  df-fin 8368  df-pnf 10530  df-mnf 10531  df-xr 10532  df-ltxr 10533  df-le 10534
This theorem is referenced by:  fsequb  13197  fsequb2  13198  caubnd  14556  limsupgre  14676  vdwnnlem3  16166  cnheibor  23246  bndth  23249  ovoliunlem2  23791  dchrisum  25754  ssfiunibd  41138  fimaxre4  41236  uzublem  41267  fourierdlem70  42025  fourierdlem71  42026  fourierdlem80  42035
  Copyright terms: Public domain W3C validator