![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre3 | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
fimaxre3 | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3114 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵)) | |
2 | eleq1 2821 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
3 | 2 | biimparc 480 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
4 | 3 | rexlimivw 3151 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
6 | 5 | ex 413 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
7 | 6 | abssdv 4062 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
8 | abrexfi 9337 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) | |
9 | fimaxre2 12143 | . . 3 ⊢ (({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) | |
10 | 7, 8, 9 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
11 | r19.23v 3182 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
12 | 11 | albii 1821 | . . . . . 6 ⊢ (∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
13 | ralcom4 3283 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
14 | eqeq1 2736 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | |
15 | 14 | rexbidv 3178 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑤 = 𝐵)) |
16 | 15 | ralab 3684 | . . . . . 6 ⊢ (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
17 | 12, 13, 16 | 3bitr4i 302 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
18 | nfv 1917 | . . . . . . . 8 ⊢ Ⅎ𝑤 𝐵 ≤ 𝑥 | |
19 | breq1 5145 | . . . . . . . 8 ⊢ (𝑤 = 𝐵 → (𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥)) | |
20 | 18, 19 | ceqsalg 3506 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
21 | 20 | ralimi 3083 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
22 | ralbi 3103 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
24 | 17, 23 | bitr3id 284 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
25 | 24 | rexbidv 3178 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
26 | 25 | adantl 482 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
27 | 10, 26 | mpbid 231 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1539 = wceq 1541 ∈ wcel 2106 {cab 2709 ∀wral 3061 ∃wrex 3070 ⊆ wss 3945 class class class wbr 5142 Fincfn 8924 ℝcr 11093 ≤ cle 11233 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5293 ax-nul 5300 ax-pow 5357 ax-pr 5421 ax-un 7709 ax-resscn 11151 ax-1cn 11152 ax-addrcl 11155 ax-rnegex 11165 ax-cnre 11167 ax-pre-lttri 11168 ax-pre-lttrn 11169 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3775 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-ord 6357 df-on 6358 df-lim 6359 df-suc 6360 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-om 7840 df-1st 7959 df-2nd 7960 df-1o 8450 df-er 8688 df-en 8925 df-dom 8926 df-sdom 8927 df-fin 8928 df-pnf 11234 df-mnf 11235 df-xr 11236 df-ltxr 11237 df-le 11238 |
This theorem is referenced by: fsequb 13924 fsequb2 13925 caubnd 15289 limsupgre 15409 vdwnnlem3 16914 cnheibor 24402 bndth 24405 ovoliunlem2 24951 dchrisum 26924 ssfiunibd 43856 fimaxre4 43948 uzublem 43977 fourierdlem70 44729 fourierdlem71 44730 fourierdlem80 44739 |
Copyright terms: Public domain | W3C validator |