MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimaxre3 Structured version   Visualization version   GIF version

Theorem fimaxre3 12105
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.)
Assertion
Ref Expression
fimaxre3 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem fimaxre3
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 r19.29 3094 . . . . . 6 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → ∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵))
2 eleq1 2816 . . . . . . . 8 (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ))
32biimparc 479 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
43rexlimivw 3130 . . . . . 6 (∃𝑦𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
51, 4syl 17 . . . . 5 ((∀𝑦𝐴 𝐵 ∈ ℝ ∧ ∃𝑦𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ)
65ex 412 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑦𝐴 𝑧 = 𝐵𝑧 ∈ ℝ))
76abssdv 4028 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ)
8 abrexfi 9279 . . 3 (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin)
9 fimaxre2 12104 . . 3 (({𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
107, 8, 9syl2anr 597 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
11 r19.23v 3160 . . . . . . 7 (∀𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ (∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1211albii 1819 . . . . . 6 (∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
13 ralcom4 3261 . . . . . 6 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤𝑦𝐴 (𝑤 = 𝐵𝑤𝑥))
14 eqeq1 2733 . . . . . . . 8 (𝑧 = 𝑤 → (𝑧 = 𝐵𝑤 = 𝐵))
1514rexbidv 3157 . . . . . . 7 (𝑧 = 𝑤 → (∃𝑦𝐴 𝑧 = 𝐵 ↔ ∃𝑦𝐴 𝑤 = 𝐵))
1615ralab 3661 . . . . . 6 (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑤(∃𝑦𝐴 𝑤 = 𝐵𝑤𝑥))
1712, 13, 163bitr4i 303 . . . . 5 (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥)
18 nfv 1914 . . . . . . . 8 𝑤 𝐵𝑥
19 breq1 5105 . . . . . . . 8 (𝑤 = 𝐵 → (𝑤𝑥𝐵𝑥))
2018, 19ceqsalg 3480 . . . . . . 7 (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
2120ralimi 3066 . . . . . 6 (∀𝑦𝐴 𝐵 ∈ ℝ → ∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥))
22 ralbi 3085 . . . . . 6 (∀𝑦𝐴 (∀𝑤(𝑤 = 𝐵𝑤𝑥) ↔ 𝐵𝑥) → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2321, 22syl 17 . . . . 5 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑦𝐴𝑤(𝑤 = 𝐵𝑤𝑥) ↔ ∀𝑦𝐴 𝐵𝑥))
2417, 23bitr3id 285 . . . 4 (∀𝑦𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∀𝑦𝐴 𝐵𝑥))
2524rexbidv 3157 . . 3 (∀𝑦𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2625adantl 481 . 2 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦𝐴 𝑧 = 𝐵}𝑤𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥))
2710, 26mpbid 232 1 ((𝐴 ∈ Fin ∧ ∀𝑦𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝐵𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  wss 3911   class class class wbr 5102  Fincfn 8895  cr 11043  cle 11185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-resscn 11101  ax-1cn 11102  ax-addrcl 11105  ax-rnegex 11115  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-om 7823  df-1st 7947  df-2nd 7948  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190
This theorem is referenced by:  fsequb  13916  fsequb2  13917  caubnd  15301  limsupgre  15423  vdwnnlem3  16944  cnheibor  24887  bndth  24890  ovoliunlem2  25437  dchrisum  27436  ssfiunibd  45300  fimaxre4  45390  uzublem  45419  fourierdlem70  46167  fourierdlem71  46168  fourierdlem80  46177
  Copyright terms: Public domain W3C validator