![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimaxre3 | Structured version Visualization version GIF version |
Description: A nonempty finite set of real numbers has a maximum (image set version). (Contributed by Mario Carneiro, 13-Feb-2014.) |
Ref | Expression |
---|---|
fimaxre3 | ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29 3112 | . . . . . 6 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → ∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵)) | |
2 | eleq1 2827 | . . . . . . . 8 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ ℝ ↔ 𝐵 ∈ ℝ)) | |
3 | 2 | biimparc 479 | . . . . . . 7 ⊢ ((𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
4 | 3 | rexlimivw 3149 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐴 (𝐵 ∈ ℝ ∧ 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
5 | 1, 4 | syl 17 | . . . . 5 ⊢ ((∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ ∧ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵) → 𝑧 ∈ ℝ) |
6 | 5 | ex 412 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ ℝ)) |
7 | 6 | abssdv 4078 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ) |
8 | abrexfi 9390 | . . 3 ⊢ (𝐴 ∈ Fin → {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) | |
9 | fimaxre2 12211 | . . 3 ⊢ (({𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ⊆ ℝ ∧ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵} ∈ Fin) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) | |
10 | 7, 8, 9 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
11 | r19.23v 3181 | . . . . . . 7 ⊢ (∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ (∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
12 | 11 | albii 1816 | . . . . . 6 ⊢ (∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
13 | ralcom4 3284 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤∀𝑦 ∈ 𝐴 (𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) | |
14 | eqeq1 2739 | . . . . . . . 8 ⊢ (𝑧 = 𝑤 → (𝑧 = 𝐵 ↔ 𝑤 = 𝐵)) | |
15 | 14 | rexbidv 3177 | . . . . . . 7 ⊢ (𝑧 = 𝑤 → (∃𝑦 ∈ 𝐴 𝑧 = 𝐵 ↔ ∃𝑦 ∈ 𝐴 𝑤 = 𝐵)) |
16 | 15 | ralab 3700 | . . . . . 6 ⊢ (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑤(∃𝑦 ∈ 𝐴 𝑤 = 𝐵 → 𝑤 ≤ 𝑥)) |
17 | 12, 13, 16 | 3bitr4i 303 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥) |
18 | nfv 1912 | . . . . . . . 8 ⊢ Ⅎ𝑤 𝐵 ≤ 𝑥 | |
19 | breq1 5151 | . . . . . . . 8 ⊢ (𝑤 = 𝐵 → (𝑤 ≤ 𝑥 ↔ 𝐵 ≤ 𝑥)) | |
20 | 18, 19 | ceqsalg 3515 | . . . . . . 7 ⊢ (𝐵 ∈ ℝ → (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
21 | 20 | ralimi 3081 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → ∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥)) |
22 | ralbi 3101 | . . . . . 6 ⊢ (∀𝑦 ∈ 𝐴 (∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ 𝐵 ≤ 𝑥) → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) | |
23 | 21, 22 | syl 17 | . . . . 5 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑦 ∈ 𝐴 ∀𝑤(𝑤 = 𝐵 → 𝑤 ≤ 𝑥) ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
24 | 17, 23 | bitr3id 285 | . . . 4 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
25 | 24 | rexbidv 3177 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
26 | 25 | adantl 481 | . 2 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → (∃𝑥 ∈ ℝ ∀𝑤 ∈ {𝑧 ∣ ∃𝑦 ∈ 𝐴 𝑧 = 𝐵}𝑤 ≤ 𝑥 ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥)) |
27 | 10, 26 | mpbid 232 | 1 ⊢ ((𝐴 ∈ Fin ∧ ∀𝑦 ∈ 𝐴 𝐵 ∈ ℝ) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝐴 𝐵 ≤ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 class class class wbr 5148 Fincfn 8984 ℝcr 11152 ≤ cle 11294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-resscn 11210 ax-1cn 11211 ax-addrcl 11214 ax-rnegex 11224 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-om 7888 df-1st 8013 df-2nd 8014 df-1o 8505 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 |
This theorem is referenced by: fsequb 14013 fsequb2 14014 caubnd 15394 limsupgre 15514 vdwnnlem3 17031 cnheibor 25001 bndth 25004 ovoliunlem2 25552 dchrisum 27551 ssfiunibd 45260 fimaxre4 45351 uzublem 45380 fourierdlem70 46132 fourierdlem71 46133 fourierdlem80 46142 |
Copyright terms: Public domain | W3C validator |