Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   GIF version

Theorem pmapglbx 39770
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 39771, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglbx ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Distinct variable groups:   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglbx
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 39358 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
3 pmapglb.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 eqid 2730 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39289 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 r19.29 3095 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → ∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆))
8 eleq1a 2824 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
98imp 406 . . . . . . . . . . . 12 ((𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
109rexlimivw 3131 . . . . . . . . . . 11 (∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
117, 10syl 17 . . . . . . . . . 10 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → 𝑦𝐵)
1211ex 412 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1312ad2antlr 727 . . . . . . . 8 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1413abssdv 4034 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
15 eqid 2730 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
16 pmapglb.g . . . . . . . 8 𝐺 = (glb‘𝐾)
173, 15, 16clatleglb 18484 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑝𝐵 ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
182, 6, 14, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
19 vex 3454 . . . . . . . . . . . . 13 𝑧 ∈ V
20 eqeq1 2734 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑦 = 𝑆𝑧 = 𝑆))
2120rexbidv 3158 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖𝐼 𝑧 = 𝑆))
2219, 21elab 3649 . . . . . . . . . . . 12 (𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ↔ ∃𝑖𝐼 𝑧 = 𝑆)
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
24 r19.23v 3162 . . . . . . . . . . 11 (∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2523, 24bitr4i 278 . . . . . . . . . 10 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2625albii 1819 . . . . . . . . 9 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
27 df-ral 3046 . . . . . . . . 9 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧))
28 ralcom4 3264 . . . . . . . . 9 (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2926, 27, 283bitr4i 303 . . . . . . . 8 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
30 nfv 1914 . . . . . . . . . . 11 𝑧 𝑝(le‘𝐾)𝑆
31 breq2 5114 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑝(le‘𝐾)𝑧𝑝(le‘𝐾)𝑆))
3230, 31ceqsalg 3486 . . . . . . . . . 10 (𝑆𝐵 → (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
3332ralimi 3067 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → ∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
34 ralbi 3086 . . . . . . . . 9 (∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆) → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3533, 34syl 17 . . . . . . . 8 (∀𝑖𝐼 𝑆𝐵 → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3629, 35bitrid 283 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3736ad2antlr 727 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3818, 37bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3938rabbidva 3415 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
40393adant3 1132 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
41 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝐾 ∈ HL)
4212abssdv 4034 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
433, 16clatglbcl 18471 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
441, 42, 43syl2an 596 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
45443adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
46 pmapglb.m . . . . 5 𝑀 = (pmap‘𝐾)
473, 15, 4, 46pmapval 39758 . . . 4 ((𝐾 ∈ HL ∧ (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
4841, 45, 47syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
49 iinrab 5036 . . . 4 (𝐼 ≠ ∅ → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
50493ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
5140, 48, 503eqtr4d 2775 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
52 nfv 1914 . . . 4 𝑖 𝐾 ∈ HL
53 nfra1 3262 . . . 4 𝑖𝑖𝐼 𝑆𝐵
54 nfv 1914 . . . 4 𝑖 𝐼 ≠ ∅
5552, 53, 54nf3an 1901 . . 3 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅)
56 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
57 rspa 3227 . . . . 5 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
58573ad2antl2 1187 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝑆𝐵)
593, 15, 4, 46pmapval 39758 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6056, 58, 59syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6155, 60iineq2d 4982 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6251, 61eqtr4d 2768 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  {crab 3408  wss 3917  c0 4299   ciin 4959   class class class wbr 5110  cfv 6514  Basecbs 17186  lecple 17234  glbcglb 18278  CLatccla 18464  Atomscatm 39263  HLchlt 39350  pmapcpmap 39498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-poset 18281  df-lub 18312  df-glb 18313  df-join 18314  df-meet 18315  df-lat 18398  df-clat 18465  df-ats 39267  df-hlat 39351  df-pmap 39505
This theorem is referenced by:  pmapglb  39771  pmapglb2xN  39773
  Copyright terms: Public domain W3C validator