Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   GIF version

Theorem pmapglbx 37065
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 37066, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglbx ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Distinct variable groups:   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglbx
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 36654 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad2antrr 725 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
3 pmapglb.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 eqid 2798 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 36585 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 485 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 r19.29 3216 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → ∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆))
8 eleq1a 2885 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
98imp 410 . . . . . . . . . . . 12 ((𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
109rexlimivw 3241 . . . . . . . . . . 11 (∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
117, 10syl 17 . . . . . . . . . 10 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → 𝑦𝐵)
1211ex 416 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1312ad2antlr 726 . . . . . . . 8 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1413abssdv 3996 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
15 eqid 2798 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
16 pmapglb.g . . . . . . . 8 𝐺 = (glb‘𝐾)
173, 15, 16clatleglb 17728 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑝𝐵 ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
182, 6, 14, 17syl3anc 1368 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
19 vex 3444 . . . . . . . . . . . . 13 𝑧 ∈ V
20 eqeq1 2802 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑦 = 𝑆𝑧 = 𝑆))
2120rexbidv 3256 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖𝐼 𝑧 = 𝑆))
2219, 21elab 3615 . . . . . . . . . . . 12 (𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ↔ ∃𝑖𝐼 𝑧 = 𝑆)
2322imbi1i 353 . . . . . . . . . . 11 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
24 r19.23v 3238 . . . . . . . . . . 11 (∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2523, 24bitr4i 281 . . . . . . . . . 10 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2625albii 1821 . . . . . . . . 9 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
27 df-ral 3111 . . . . . . . . 9 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧))
28 ralcom4 3198 . . . . . . . . 9 (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2926, 27, 283bitr4i 306 . . . . . . . 8 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
30 nfv 1915 . . . . . . . . . . 11 𝑧 𝑝(le‘𝐾)𝑆
31 breq2 5034 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑝(le‘𝐾)𝑧𝑝(le‘𝐾)𝑆))
3230, 31ceqsalg 3476 . . . . . . . . . 10 (𝑆𝐵 → (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
3332ralimi 3128 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → ∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
34 ralbi 3135 . . . . . . . . 9 (∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆) → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3533, 34syl 17 . . . . . . . 8 (∀𝑖𝐼 𝑆𝐵 → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3629, 35syl5bb 286 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3736ad2antlr 726 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3818, 37bitrd 282 . . . . 5 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3938rabbidva 3425 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
40393adant3 1129 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
41 simp1 1133 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝐾 ∈ HL)
4212abssdv 3996 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
433, 16clatglbcl 17716 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
441, 42, 43syl2an 598 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
45443adant3 1129 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
46 pmapglb.m . . . . 5 𝑀 = (pmap‘𝐾)
473, 15, 4, 46pmapval 37053 . . . 4 ((𝐾 ∈ HL ∧ (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
4841, 45, 47syl2anc 587 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
49 iinrab 4954 . . . 4 (𝐼 ≠ ∅ → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
50493ad2ant3 1132 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
5140, 48, 503eqtr4d 2843 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
52 nfv 1915 . . . 4 𝑖 𝐾 ∈ HL
53 nfra1 3183 . . . 4 𝑖𝑖𝐼 𝑆𝐵
54 nfv 1915 . . . 4 𝑖 𝐼 ≠ ∅
5552, 53, 54nf3an 1902 . . 3 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅)
56 simpl1 1188 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
57 rspa 3171 . . . . 5 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
58573ad2antl2 1183 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝑆𝐵)
593, 15, 4, 46pmapval 37053 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6056, 58, 59syl2anc 587 . . 3 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6155, 60iineq2d 4904 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6251, 61eqtr4d 2836 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084  wal 1536   = wceq 1538  wcel 2111  {cab 2776  wne 2987  wral 3106  wrex 3107  {crab 3110  wss 3881  c0 4243   ciin 4882   class class class wbr 5030  cfv 6324  Basecbs 16475  lecple 16564  glbcglb 17545  CLatccla 17709  Atomscatm 36559  HLchlt 36646  pmapcpmap 36793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-poset 17548  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-lat 17648  df-clat 17710  df-ats 36563  df-hlat 36647  df-pmap 36800
This theorem is referenced by:  pmapglb  37066  pmapglb2xN  37068
  Copyright terms: Public domain W3C validator