Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   GIF version

Theorem pmapglbx 38338
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 38339, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐡 = (Baseβ€˜πΎ)
pmapglb.g 𝐺 = (glbβ€˜πΎ)
pmapglb.m 𝑀 = (pmapβ€˜πΎ)
Assertion
Ref Expression
pmapglbx ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})) = ∩ 𝑖 ∈ 𝐼 (π‘€β€˜π‘†))
Distinct variable groups:   𝑦,𝑖,𝐡   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglbx
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 37926 . . . . . . . 8 (𝐾 ∈ HL β†’ 𝐾 ∈ CLat)
21ad2antrr 724 . . . . . . 7 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ 𝐾 ∈ CLat)
3 pmapglb.b . . . . . . . . 9 𝐡 = (Baseβ€˜πΎ)
4 eqid 2731 . . . . . . . . 9 (Atomsβ€˜πΎ) = (Atomsβ€˜πΎ)
53, 4atbase 37857 . . . . . . . 8 (𝑝 ∈ (Atomsβ€˜πΎ) β†’ 𝑝 ∈ 𝐡)
65adantl 482 . . . . . . 7 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ 𝑝 ∈ 𝐡)
7 r19.29 3113 . . . . . . . . . . 11 ((βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆) β†’ βˆƒπ‘– ∈ 𝐼 (𝑆 ∈ 𝐡 ∧ 𝑦 = 𝑆))
8 eleq1a 2827 . . . . . . . . . . . . 13 (𝑆 ∈ 𝐡 β†’ (𝑦 = 𝑆 β†’ 𝑦 ∈ 𝐡))
98imp 407 . . . . . . . . . . . 12 ((𝑆 ∈ 𝐡 ∧ 𝑦 = 𝑆) β†’ 𝑦 ∈ 𝐡)
109rexlimivw 3150 . . . . . . . . . . 11 (βˆƒπ‘– ∈ 𝐼 (𝑆 ∈ 𝐡 ∧ 𝑦 = 𝑆) β†’ 𝑦 ∈ 𝐡)
117, 10syl 17 . . . . . . . . . 10 ((βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆) β†’ 𝑦 ∈ 𝐡)
1211ex 413 . . . . . . . . 9 (βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 β†’ (βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆 β†’ 𝑦 ∈ 𝐡))
1312ad2antlr 725 . . . . . . . 8 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆 β†’ 𝑦 ∈ 𝐡))
1413abssdv 4045 . . . . . . 7 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} βŠ† 𝐡)
15 eqid 2731 . . . . . . . 8 (leβ€˜πΎ) = (leβ€˜πΎ)
16 pmapglb.g . . . . . . . 8 𝐺 = (glbβ€˜πΎ)
173, 15, 16clatleglb 18436 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝐡 ∧ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} βŠ† 𝐡) β†’ (𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧))
182, 6, 14, 17syl3anc 1371 . . . . . 6 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ↔ βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧))
19 vex 3463 . . . . . . . . . . . . 13 𝑧 ∈ V
20 eqeq1 2735 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 β†’ (𝑦 = 𝑆 ↔ 𝑧 = 𝑆))
2120rexbidv 3177 . . . . . . . . . . . . 13 (𝑦 = 𝑧 β†’ (βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆 ↔ βˆƒπ‘– ∈ 𝐼 𝑧 = 𝑆))
2219, 21elab 3648 . . . . . . . . . . . 12 (𝑧 ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} ↔ βˆƒπ‘– ∈ 𝐼 𝑧 = 𝑆)
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ (βˆƒπ‘– ∈ 𝐼 𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
24 r19.23v 3181 . . . . . . . . . . 11 (βˆ€π‘– ∈ 𝐼 (𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ (βˆƒπ‘– ∈ 𝐼 𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
2523, 24bitr4i 277 . . . . . . . . . 10 ((𝑧 ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ βˆ€π‘– ∈ 𝐼 (𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
2625albii 1821 . . . . . . . . 9 (βˆ€π‘§(𝑧 ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ βˆ€π‘§βˆ€π‘– ∈ 𝐼 (𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
27 df-ral 3061 . . . . . . . . 9 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧 ↔ βˆ€π‘§(𝑧 ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} β†’ 𝑝(leβ€˜πΎ)𝑧))
28 ralcom4 3280 . . . . . . . . 9 (βˆ€π‘– ∈ 𝐼 βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ βˆ€π‘§βˆ€π‘– ∈ 𝐼 (𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
2926, 27, 283bitr4i 302 . . . . . . . 8 (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧 ↔ βˆ€π‘– ∈ 𝐼 βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧))
30 nfv 1917 . . . . . . . . . . 11 Ⅎ𝑧 𝑝(leβ€˜πΎ)𝑆
31 breq2 5129 . . . . . . . . . . 11 (𝑧 = 𝑆 β†’ (𝑝(leβ€˜πΎ)𝑧 ↔ 𝑝(leβ€˜πΎ)𝑆))
3230, 31ceqsalg 3491 . . . . . . . . . 10 (𝑆 ∈ 𝐡 β†’ (βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ 𝑝(leβ€˜πΎ)𝑆))
3332ralimi 3082 . . . . . . . . 9 (βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 β†’ βˆ€π‘– ∈ 𝐼 (βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ 𝑝(leβ€˜πΎ)𝑆))
34 ralbi 3102 . . . . . . . . 9 (βˆ€π‘– ∈ 𝐼 (βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ 𝑝(leβ€˜πΎ)𝑆) β†’ (βˆ€π‘– ∈ 𝐼 βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆))
3533, 34syl 17 . . . . . . . 8 (βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 β†’ (βˆ€π‘– ∈ 𝐼 βˆ€π‘§(𝑧 = 𝑆 β†’ 𝑝(leβ€˜πΎ)𝑧) ↔ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆))
3629, 35bitrid 282 . . . . . . 7 (βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 β†’ (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧 ↔ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆))
3736ad2antlr 725 . . . . . 6 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (βˆ€π‘§ ∈ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}𝑝(leβ€˜πΎ)𝑧 ↔ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆))
3818, 37bitrd 278 . . . . 5 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) ∧ 𝑝 ∈ (Atomsβ€˜πΎ)) β†’ (𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ↔ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆))
3938rabbidva 3425 . . . 4 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) β†’ {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆})
40393adant3 1132 . . 3 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆})
41 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ 𝐾 ∈ HL)
4212abssdv 4045 . . . . . 6 (βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 β†’ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} βŠ† 𝐡)
433, 16clatglbcl 18423 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆} βŠ† 𝐡) β†’ (πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐡)
441, 42, 43syl2an 596 . . . . 5 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡) β†’ (πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐡)
45443adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ (πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐡)
46 pmapglb.m . . . . 5 𝑀 = (pmapβ€˜πΎ)
473, 15, 4, 46pmapval 38326 . . . 4 ((𝐾 ∈ HL ∧ (πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐡) β†’ (π‘€β€˜(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})})
4841, 45, 47syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})})
49 iinrab 5049 . . . 4 (𝐼 β‰  βˆ… β†’ ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆} = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆})
50493ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆} = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ βˆ€π‘– ∈ 𝐼 𝑝(leβ€˜πΎ)𝑆})
5140, 48, 503eqtr4d 2781 . 2 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})) = ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆})
52 nfv 1917 . . . 4 Ⅎ𝑖 𝐾 ∈ HL
53 nfra1 3278 . . . 4 β„²π‘–βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡
54 nfv 1917 . . . 4 Ⅎ𝑖 𝐼 β‰  βˆ…
5552, 53, 54nf3an 1904 . . 3 Ⅎ𝑖(𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…)
56 simpl1 1191 . . . 4 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) ∧ 𝑖 ∈ 𝐼) β†’ 𝐾 ∈ HL)
57 rspa 3242 . . . . 5 ((βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝑖 ∈ 𝐼) β†’ 𝑆 ∈ 𝐡)
58573ad2antl2 1186 . . . 4 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) ∧ 𝑖 ∈ 𝐼) β†’ 𝑆 ∈ 𝐡)
593, 15, 4, 46pmapval 38326 . . . 4 ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐡) β†’ (π‘€β€˜π‘†) = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆})
6056, 58, 59syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) ∧ 𝑖 ∈ 𝐼) β†’ (π‘€β€˜π‘†) = {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆})
6155, 60iineq2d 4997 . 2 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ ∩ 𝑖 ∈ 𝐼 (π‘€β€˜π‘†) = ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atomsβ€˜πΎ) ∣ 𝑝(leβ€˜πΎ)𝑆})
6251, 61eqtr4d 2774 1 ((𝐾 ∈ HL ∧ βˆ€π‘– ∈ 𝐼 𝑆 ∈ 𝐡 ∧ 𝐼 β‰  βˆ…) β†’ (π‘€β€˜(πΊβ€˜{𝑦 ∣ βˆƒπ‘– ∈ 𝐼 𝑦 = 𝑆})) = ∩ 𝑖 ∈ 𝐼 (π‘€β€˜π‘†))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087  βˆ€wal 1539   = wceq 1541   ∈ wcel 2106  {cab 2708   β‰  wne 2939  βˆ€wral 3060  βˆƒwrex 3069  {crab 3418   βŠ† wss 3928  βˆ…c0 4302  βˆ© ciin 4975   class class class wbr 5125  β€˜cfv 6516  Basecbs 17109  lecple 17169  glbcglb 18228  CLatccla 18416  Atomscatm 37831  HLchlt 37918  pmapcpmap 38066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-rep 5262  ax-sep 5276  ax-nul 5283  ax-pow 5340  ax-pr 5404  ax-un 7692
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3365  df-rab 3419  df-v 3461  df-sbc 3758  df-csb 3874  df-dif 3931  df-un 3933  df-in 3935  df-ss 3945  df-nul 4303  df-if 4507  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4886  df-iun 4976  df-iin 4977  df-br 5126  df-opab 5188  df-mpt 5209  df-id 5551  df-xp 5659  df-rel 5660  df-cnv 5661  df-co 5662  df-dm 5663  df-rn 5664  df-res 5665  df-ima 5666  df-iota 6468  df-fun 6518  df-fn 6519  df-f 6520  df-f1 6521  df-fo 6522  df-f1o 6523  df-fv 6524  df-riota 7333  df-ov 7380  df-oprab 7381  df-poset 18231  df-lub 18264  df-glb 18265  df-join 18266  df-meet 18267  df-lat 18350  df-clat 18417  df-ats 37835  df-hlat 37919  df-pmap 38073
This theorem is referenced by:  pmapglb  38339  pmapglb2xN  38341
  Copyright terms: Public domain W3C validator