Step | Hyp | Ref
| Expression |
1 | | hlclat 37372 |
. . . . . . . 8
⊢ (𝐾 ∈ HL → 𝐾 ∈ CLat) |
2 | 1 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ CLat) |
3 | | pmapglb.b |
. . . . . . . . 9
⊢ 𝐵 = (Base‘𝐾) |
4 | | eqid 2738 |
. . . . . . . . 9
⊢
(Atoms‘𝐾) =
(Atoms‘𝐾) |
5 | 3, 4 | atbase 37303 |
. . . . . . . 8
⊢ (𝑝 ∈ (Atoms‘𝐾) → 𝑝 ∈ 𝐵) |
6 | 5 | adantl 482 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝 ∈ 𝐵) |
7 | | r19.29 3184 |
. . . . . . . . . . 11
⊢
((∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆) → ∃𝑖 ∈ 𝐼 (𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆)) |
8 | | eleq1a 2834 |
. . . . . . . . . . . . 13
⊢ (𝑆 ∈ 𝐵 → (𝑦 = 𝑆 → 𝑦 ∈ 𝐵)) |
9 | 8 | imp 407 |
. . . . . . . . . . . 12
⊢ ((𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆) → 𝑦 ∈ 𝐵) |
10 | 9 | rexlimivw 3211 |
. . . . . . . . . . 11
⊢
(∃𝑖 ∈
𝐼 (𝑆 ∈ 𝐵 ∧ 𝑦 = 𝑆) → 𝑦 ∈ 𝐵) |
11 | 7, 10 | syl 17 |
. . . . . . . . . 10
⊢
((∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 ∧ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆) → 𝑦 ∈ 𝐵) |
12 | 11 | ex 413 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (∃𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵)) |
13 | 12 | ad2antlr 724 |
. . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∃𝑖 ∈ 𝐼 𝑦 = 𝑆 → 𝑦 ∈ 𝐵)) |
14 | 13 | abssdv 4002 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} ⊆ 𝐵) |
15 | | eqid 2738 |
. . . . . . . 8
⊢
(le‘𝐾) =
(le‘𝐾) |
16 | | pmapglb.g |
. . . . . . . 8
⊢ 𝐺 = (glb‘𝐾) |
17 | 3, 15, 16 | clatleglb 18236 |
. . . . . . 7
⊢ ((𝐾 ∈ CLat ∧ 𝑝 ∈ 𝐵 ∧ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧)) |
18 | 2, 6, 14, 17 | syl3anc 1370 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧)) |
19 | | vex 3436 |
. . . . . . . . . . . . 13
⊢ 𝑧 ∈ V |
20 | | eqeq1 2742 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑧 → (𝑦 = 𝑆 ↔ 𝑧 = 𝑆)) |
21 | 20 | rexbidv 3226 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑧 → (∃𝑖 ∈ 𝐼 𝑦 = 𝑆 ↔ ∃𝑖 ∈ 𝐼 𝑧 = 𝑆)) |
22 | 19, 21 | elab 3609 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} ↔ ∃𝑖 ∈ 𝐼 𝑧 = 𝑆) |
23 | 22 | imbi1i 350 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
24 | | r19.23v 3208 |
. . . . . . . . . . 11
⊢
(∀𝑖 ∈
𝐼 (𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖 ∈ 𝐼 𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
25 | 23, 24 | bitr4i 277 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖 ∈ 𝐼 (𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
26 | 25 | albii 1822 |
. . . . . . . . 9
⊢
(∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧∀𝑖 ∈ 𝐼 (𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
27 | | df-ral 3069 |
. . . . . . . . 9
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧)) |
28 | | ralcom4 3164 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐼 ∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧∀𝑖 ∈ 𝐼 (𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
29 | 26, 27, 28 | 3bitr4i 303 |
. . . . . . . 8
⊢
(∀𝑧 ∈
{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖 ∈ 𝐼 ∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧)) |
30 | | nfv 1917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑧 𝑝(le‘𝐾)𝑆 |
31 | | breq2 5078 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑆 → (𝑝(le‘𝐾)𝑧 ↔ 𝑝(le‘𝐾)𝑆)) |
32 | 30, 31 | ceqsalg 3464 |
. . . . . . . . . 10
⊢ (𝑆 ∈ 𝐵 → (∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆)) |
33 | 32 | ralimi 3087 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → ∀𝑖 ∈ 𝐼 (∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆)) |
34 | | ralbi 3089 |
. . . . . . . . 9
⊢
(∀𝑖 ∈
𝐼 (∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆) → (∀𝑖 ∈ 𝐼 ∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆)) |
35 | 33, 34 | syl 17 |
. . . . . . . 8
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (∀𝑖 ∈ 𝐼 ∀𝑧(𝑧 = 𝑆 → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆)) |
36 | 29, 35 | syl5bb 283 |
. . . . . . 7
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆)) |
37 | 36 | ad2antlr 724 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆)) |
38 | 18, 37 | bitrd 278 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ↔ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆)) |
39 | 38 | rabbidva 3413 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆}) |
40 | 39 | 3adant3 1131 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆}) |
41 | | simp1 1135 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → 𝐾 ∈ HL) |
42 | 12 | abssdv 4002 |
. . . . . 6
⊢
(∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 → {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} ⊆ 𝐵) |
43 | 3, 16 | clatglbcl 18223 |
. . . . . 6
⊢ ((𝐾 ∈ CLat ∧ {𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐵) |
44 | 1, 42, 43 | syl2an 596 |
. . . . 5
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐵) |
45 | 44 | 3adant3 1131 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐵) |
46 | | pmapglb.m |
. . . . 5
⊢ 𝑀 = (pmap‘𝐾) |
47 | 3, 15, 4, 46 | pmapval 37771 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆}) ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})}) |
48 | 41, 45, 47 | syl2anc 584 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})}) |
49 | | iinrab 4998 |
. . . 4
⊢ (𝐼 ≠ ∅ → ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆}) |
50 | 49 | 3ad2ant3 1134 |
. . 3
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → ∩ 𝑖 ∈ 𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖 ∈ 𝐼 𝑝(le‘𝐾)𝑆}) |
51 | 40, 48, 50 | 3eqtr4d 2788 |
. 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = ∩
𝑖 ∈ 𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆}) |
52 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑖 𝐾 ∈ HL |
53 | | nfra1 3144 |
. . . 4
⊢
Ⅎ𝑖∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 |
54 | | nfv 1917 |
. . . 4
⊢
Ⅎ𝑖 𝐼 ≠ ∅ |
55 | 52, 53, 54 | nf3an 1904 |
. . 3
⊢
Ⅎ𝑖(𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) |
56 | | simpl1 1190 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) ∧ 𝑖 ∈ 𝐼) → 𝐾 ∈ HL) |
57 | | rspa 3132 |
. . . . 5
⊢
((∀𝑖 ∈
𝐼 𝑆 ∈ 𝐵 ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ 𝐵) |
58 | 57 | 3ad2antl2 1185 |
. . . 4
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) ∧ 𝑖 ∈ 𝐼) → 𝑆 ∈ 𝐵) |
59 | 3, 15, 4, 46 | pmapval 37771 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ 𝑆 ∈ 𝐵) → (𝑀‘𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆}) |
60 | 56, 58, 59 | syl2anc 584 |
. . 3
⊢ (((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) ∧ 𝑖 ∈ 𝐼) → (𝑀‘𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆}) |
61 | 55, 60 | iineq2d 4947 |
. 2
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → ∩ 𝑖 ∈ 𝐼 (𝑀‘𝑆) = ∩
𝑖 ∈ 𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆}) |
62 | 51, 61 | eqtr4d 2781 |
1
⊢ ((𝐾 ∈ HL ∧ ∀𝑖 ∈ 𝐼 𝑆 ∈ 𝐵 ∧ 𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖 ∈ 𝐼 𝑦 = 𝑆})) = ∩
𝑖 ∈ 𝐼 (𝑀‘𝑆)) |