Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   GIF version

Theorem pmapglbx 39867
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 39868, where we read 𝑆 as 𝑆(𝑖). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b 𝐵 = (Base‘𝐾)
pmapglb.g 𝐺 = (glb‘𝐾)
pmapglb.m 𝑀 = (pmap‘𝐾)
Assertion
Ref Expression
pmapglbx ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Distinct variable groups:   𝑦,𝑖,𝐵   𝑖,𝐼,𝑦   𝑖,𝐾,𝑦   𝑦,𝑆
Allowed substitution hints:   𝑆(𝑖)   𝐺(𝑦,𝑖)   𝑀(𝑦,𝑖)

Proof of Theorem pmapglbx
Dummy variables 𝑝 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 39456 . . . . . . . 8 (𝐾 ∈ HL → 𝐾 ∈ CLat)
21ad2antrr 726 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝐾 ∈ CLat)
3 pmapglb.b . . . . . . . . 9 𝐵 = (Base‘𝐾)
4 eqid 2731 . . . . . . . . 9 (Atoms‘𝐾) = (Atoms‘𝐾)
53, 4atbase 39387 . . . . . . . 8 (𝑝 ∈ (Atoms‘𝐾) → 𝑝𝐵)
65adantl 481 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → 𝑝𝐵)
7 r19.29 3095 . . . . . . . . . . 11 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → ∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆))
8 eleq1a 2826 . . . . . . . . . . . . 13 (𝑆𝐵 → (𝑦 = 𝑆𝑦𝐵))
98imp 406 . . . . . . . . . . . 12 ((𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
109rexlimivw 3129 . . . . . . . . . . 11 (∃𝑖𝐼 (𝑆𝐵𝑦 = 𝑆) → 𝑦𝐵)
117, 10syl 17 . . . . . . . . . 10 ((∀𝑖𝐼 𝑆𝐵 ∧ ∃𝑖𝐼 𝑦 = 𝑆) → 𝑦𝐵)
1211ex 412 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1312ad2antlr 727 . . . . . . . 8 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∃𝑖𝐼 𝑦 = 𝑆𝑦𝐵))
1413abssdv 4014 . . . . . . 7 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
15 eqid 2731 . . . . . . . 8 (le‘𝐾) = (le‘𝐾)
16 pmapglb.g . . . . . . . 8 𝐺 = (glb‘𝐾)
173, 15, 16clatleglb 18424 . . . . . . 7 ((𝐾 ∈ CLat ∧ 𝑝𝐵 ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
182, 6, 14, 17syl3anc 1373 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧))
19 vex 3440 . . . . . . . . . . . . 13 𝑧 ∈ V
20 eqeq1 2735 . . . . . . . . . . . . . 14 (𝑦 = 𝑧 → (𝑦 = 𝑆𝑧 = 𝑆))
2120rexbidv 3156 . . . . . . . . . . . . 13 (𝑦 = 𝑧 → (∃𝑖𝐼 𝑦 = 𝑆 ↔ ∃𝑖𝐼 𝑧 = 𝑆))
2219, 21elab 3630 . . . . . . . . . . . 12 (𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ↔ ∃𝑖𝐼 𝑧 = 𝑆)
2322imbi1i 349 . . . . . . . . . . 11 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
24 r19.23v 3159 . . . . . . . . . . 11 (∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ (∃𝑖𝐼 𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2523, 24bitr4i 278 . . . . . . . . . 10 ((𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2625albii 1820 . . . . . . . . 9 (∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
27 df-ral 3048 . . . . . . . . 9 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑧(𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} → 𝑝(le‘𝐾)𝑧))
28 ralcom4 3258 . . . . . . . . 9 (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑧𝑖𝐼 (𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
2926, 27, 283bitr4i 303 . . . . . . . 8 (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧))
30 nfv 1915 . . . . . . . . . . 11 𝑧 𝑝(le‘𝐾)𝑆
31 breq2 5093 . . . . . . . . . . 11 (𝑧 = 𝑆 → (𝑝(le‘𝐾)𝑧𝑝(le‘𝐾)𝑆))
3230, 31ceqsalg 3472 . . . . . . . . . 10 (𝑆𝐵 → (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
3332ralimi 3069 . . . . . . . . 9 (∀𝑖𝐼 𝑆𝐵 → ∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆))
34 ralbi 3087 . . . . . . . . 9 (∀𝑖𝐼 (∀𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ 𝑝(le‘𝐾)𝑆) → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3533, 34syl 17 . . . . . . . 8 (∀𝑖𝐼 𝑆𝐵 → (∀𝑖𝐼𝑧(𝑧 = 𝑆𝑝(le‘𝐾)𝑧) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3629, 35bitrid 283 . . . . . . 7 (∀𝑖𝐼 𝑆𝐵 → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3736ad2antlr 727 . . . . . 6 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (∀𝑧 ∈ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}𝑝(le‘𝐾)𝑧 ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3818, 37bitrd 279 . . . . 5 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) ∧ 𝑝 ∈ (Atoms‘𝐾)) → (𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ↔ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆))
3938rabbidva 3401 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
40393adant3 1132 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
41 simp1 1136 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝐾 ∈ HL)
4212abssdv 4014 . . . . . 6 (∀𝑖𝐼 𝑆𝐵 → {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵)
433, 16clatglbcl 18411 . . . . . 6 ((𝐾 ∈ CLat ∧ {𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆} ⊆ 𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
441, 42, 43syl2an 596 . . . . 5 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
45443adant3 1132 . . . 4 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵)
46 pmapglb.m . . . . 5 𝑀 = (pmap‘𝐾)
473, 15, 4, 46pmapval 39855 . . . 4 ((𝐾 ∈ HL ∧ (𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆}) ∈ 𝐵) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
4841, 45, 47syl2anc 584 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})})
49 iinrab 5015 . . . 4 (𝐼 ≠ ∅ → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
50493ad2ant3 1135 . . 3 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆} = {𝑝 ∈ (Atoms‘𝐾) ∣ ∀𝑖𝐼 𝑝(le‘𝐾)𝑆})
5140, 48, 503eqtr4d 2776 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
52 nfv 1915 . . . 4 𝑖 𝐾 ∈ HL
53 nfra1 3256 . . . 4 𝑖𝑖𝐼 𝑆𝐵
54 nfv 1915 . . . 4 𝑖 𝐼 ≠ ∅
5552, 53, 54nf3an 1902 . . 3 𝑖(𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅)
56 simpl1 1192 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝐾 ∈ HL)
57 rspa 3221 . . . . 5 ((∀𝑖𝐼 𝑆𝐵𝑖𝐼) → 𝑆𝐵)
58573ad2antl2 1187 . . . 4 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → 𝑆𝐵)
593, 15, 4, 46pmapval 39855 . . . 4 ((𝐾 ∈ HL ∧ 𝑆𝐵) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6056, 58, 59syl2anc 584 . . 3 (((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) ∧ 𝑖𝐼) → (𝑀𝑆) = {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6155, 60iineq2d 4963 . 2 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → 𝑖𝐼 (𝑀𝑆) = 𝑖𝐼 {𝑝 ∈ (Atoms‘𝐾) ∣ 𝑝(le‘𝐾)𝑆})
6251, 61eqtr4d 2769 1 ((𝐾 ∈ HL ∧ ∀𝑖𝐼 𝑆𝐵𝐼 ≠ ∅) → (𝑀‘(𝐺‘{𝑦 ∣ ∃𝑖𝐼 𝑦 = 𝑆})) = 𝑖𝐼 (𝑀𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wne 2928  wral 3047  wrex 3056  {crab 3395  wss 3897  c0 4280   ciin 4940   class class class wbr 5089  cfv 6481  Basecbs 17120  lecple 17168  glbcglb 18216  CLatccla 18404  Atomscatm 39361  HLchlt 39448  pmapcpmap 39595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-poset 18219  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-lat 18338  df-clat 18405  df-ats 39365  df-hlat 39449  df-pmap 39602
This theorem is referenced by:  pmapglb  39868  pmapglb2xN  39870
  Copyright terms: Public domain W3C validator