MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  uniiunlem Structured version   Visualization version   GIF version

Theorem uniiunlem 4084
Description: A subset relationship useful for converting union to indexed union using dfiun2 5036 or dfiun2g 5033 and intersection to indexed intersection using dfiin2 5037. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.)
Assertion
Ref Expression
uniiunlem (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶))
Distinct variable groups:   𝑥,𝑦   𝑦,𝐴   𝑦,𝐵   𝑥,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)   𝐶(𝑦)   𝐷(𝑥,𝑦)

Proof of Theorem uniiunlem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2736 . . . . . 6 (𝑦 = 𝑧 → (𝑦 = 𝐵𝑧 = 𝐵))
21rexbidv 3178 . . . . 5 (𝑦 = 𝑧 → (∃𝑥𝐴 𝑦 = 𝐵 ↔ ∃𝑥𝐴 𝑧 = 𝐵))
32cbvabv 2805 . . . 4 {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵}
43sseq1i 4010 . . 3 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶)
5 r19.23v 3182 . . . . 5 (∀𝑥𝐴 (𝑧 = 𝐵𝑧𝐶) ↔ (∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
65albii 1821 . . . 4 (∀𝑧𝑥𝐴 (𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
7 ralcom4 3283 . . . 4 (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑧𝑥𝐴 (𝑧 = 𝐵𝑧𝐶))
8 abss 4057 . . . 4 ({𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥𝐴 𝑧 = 𝐵𝑧𝐶))
96, 7, 83bitr4i 302 . . 3 (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ {𝑧 ∣ ∃𝑥𝐴 𝑧 = 𝐵} ⊆ 𝐶)
104, 9bitr4i 277 . 2 ({𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶))
11 nfv 1917 . . . . 5 𝑧 𝐵𝐶
12 eleq1 2821 . . . . 5 (𝑧 = 𝐵 → (𝑧𝐶𝐵𝐶))
1311, 12ceqsalg 3507 . . . 4 (𝐵𝐷 → (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶))
1413ralimi 3083 . . 3 (∀𝑥𝐴 𝐵𝐷 → ∀𝑥𝐴 (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶))
15 ralbi 3103 . . 3 (∀𝑥𝐴 (∀𝑧(𝑧 = 𝐵𝑧𝐶) ↔ 𝐵𝐶) → (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑥𝐴 𝐵𝐶))
1614, 15syl 17 . 2 (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴𝑧(𝑧 = 𝐵𝑧𝐶) ↔ ∀𝑥𝐴 𝐵𝐶))
1710, 16bitr2id 283 1 (∀𝑥𝐴 𝐵𝐷 → (∀𝑥𝐴 𝐵𝐶 ↔ {𝑦 ∣ ∃𝑥𝐴 𝑦 = 𝐵} ⊆ 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1539   = wceq 1541  wcel 2106  {cab 2709  wral 3061  wrex 3070  wss 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-v 3476  df-in 3955  df-ss 3965
This theorem is referenced by:  mreiincl  17539  iunopn  22399  sigaclci  33125  dihglblem5  40164
  Copyright terms: Public domain W3C validator