![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > uniiunlem | Structured version Visualization version GIF version |
Description: A subset relationship useful for converting union to indexed union using dfiun2 5038 or dfiun2g 5035 and intersection to indexed intersection using dfiin2 5039. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
Ref | Expression |
---|---|
uniiunlem | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2739 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) | |
2 | 1 | rexbidv 3177 | . . . . 5 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | cbvabv 2810 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
4 | 3 | sseq1i 4024 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
5 | r19.23v 3181 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
6 | 5 | albii 1816 | . . . 4 ⊢ (∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
7 | ralcom4 3284 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
8 | abss 4073 | . . . 4 ⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
9 | 6, 7, 8 | 3bitr4i 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
10 | 4, 9 | bitr4i 278 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
11 | nfv 1912 | . . . . 5 ⊢ Ⅎ𝑧 𝐵 ∈ 𝐶 | |
12 | eleq1 2827 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
13 | 11, 12 | ceqsalg 3515 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
14 | 13 | ralimi 3081 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
15 | ralbi 3101 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
17 | 10, 16 | bitr2id 284 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∀wal 1535 = wceq 1537 ∈ wcel 2106 {cab 2712 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 df-ss 3980 |
This theorem is referenced by: mreiincl 17641 iunopn 22920 sigaclci 34113 dihglblem5 41281 |
Copyright terms: Public domain | W3C validator |