Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > uniiunlem | Structured version Visualization version GIF version |
Description: A subset relationship useful for converting union to indexed union using dfiun2 4959 or dfiun2g 4957 and intersection to indexed intersection using dfiin2 4960. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
Ref | Expression |
---|---|
uniiunlem | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqeq1 2742 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) | |
2 | 1 | rexbidv 3225 | . . . . 5 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
3 | 2 | cbvabv 2812 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
4 | 3 | sseq1i 3945 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
5 | r19.23v 3207 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
6 | 5 | albii 1823 | . . . 4 ⊢ (∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
7 | ralcom4 3161 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
8 | abss 3990 | . . . 4 ⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
9 | 6, 7, 8 | 3bitr4i 302 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
10 | 4, 9 | bitr4i 277 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
11 | nfv 1918 | . . . . 5 ⊢ Ⅎ𝑧 𝐵 ∈ 𝐶 | |
12 | eleq1 2826 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
13 | 11, 12 | ceqsalg 3454 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
14 | 13 | ralimi 3086 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
15 | ralbi 3092 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) | |
16 | 14, 15 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
17 | 10, 16 | bitr2id 283 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∀wal 1537 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 ⊆ wss 3883 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-v 3424 df-in 3890 df-ss 3900 |
This theorem is referenced by: mreiincl 17222 iunopn 21955 sigaclci 32000 dihglblem5 39239 |
Copyright terms: Public domain | W3C validator |