| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > uniiunlem | Structured version Visualization version GIF version | ||
| Description: A subset relationship useful for converting union to indexed union using dfiun2 5033 or dfiun2g 5030 and intersection to indexed intersection using dfiin2 5034. (Contributed by NM, 5-Oct-2006.) (Proof shortened by Mario Carneiro, 26-Sep-2015.) |
| Ref | Expression |
|---|---|
| uniiunlem | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqeq1 2741 | . . . . . 6 ⊢ (𝑦 = 𝑧 → (𝑦 = 𝐵 ↔ 𝑧 = 𝐵)) | |
| 2 | 1 | rexbidv 3179 | . . . . 5 ⊢ (𝑦 = 𝑧 → (∃𝑥 ∈ 𝐴 𝑦 = 𝐵 ↔ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵)) |
| 3 | 2 | cbvabv 2812 | . . . 4 ⊢ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} |
| 4 | 3 | sseq1i 4012 | . . 3 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
| 5 | r19.23v 3183 | . . . . 5 ⊢ (∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ (∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
| 6 | 5 | albii 1819 | . . . 4 ⊢ (∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
| 7 | ralcom4 3286 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
| 8 | abss 4063 | . . . 4 ⊢ ({𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) | |
| 9 | 6, 7, 8 | 3bitr4i 303 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 = 𝐵} ⊆ 𝐶) |
| 10 | 4, 9 | bitr4i 278 | . 2 ⊢ ({𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶)) |
| 11 | nfv 1914 | . . . . 5 ⊢ Ⅎ𝑧 𝐵 ∈ 𝐶 | |
| 12 | eleq1 2829 | . . . . 5 ⊢ (𝑧 = 𝐵 → (𝑧 ∈ 𝐶 ↔ 𝐵 ∈ 𝐶)) | |
| 13 | 11, 12 | ceqsalg 3517 | . . . 4 ⊢ (𝐵 ∈ 𝐷 → (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
| 14 | 13 | ralimi 3083 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → ∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶)) |
| 15 | ralbi 3103 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ 𝐵 ∈ 𝐶) → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) | |
| 16 | 14, 15 | syl 17 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 ∀𝑧(𝑧 = 𝐵 → 𝑧 ∈ 𝐶) ↔ ∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶)) |
| 17 | 10, 16 | bitr2id 284 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐷 → (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝐶 ↔ {𝑦 ∣ ∃𝑥 ∈ 𝐴 𝑦 = 𝐵} ⊆ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 ⊆ wss 3951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rex 3071 df-ss 3968 |
| This theorem is referenced by: mreiincl 17639 iunopn 22904 sigaclci 34133 dihglblem5 41300 |
| Copyright terms: Public domain | W3C validator |