| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | rngop.1 | . . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | 
| 2 | 1 | rnmpo 7566 | . . . 4
⊢ ran 𝐹 = {𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶} | 
| 3 | 2 | raleqi 3324 | . . 3
⊢
(∀𝑧 ∈
ran 𝐹𝜑 ↔ ∀𝑧 ∈ {𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶}𝜑) | 
| 4 |  | eqeq1 2741 | . . . . 5
⊢ (𝑤 = 𝑧 → (𝑤 = 𝐶 ↔ 𝑧 = 𝐶)) | 
| 5 | 4 | 2rexbidv 3222 | . . . 4
⊢ (𝑤 = 𝑧 → (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶)) | 
| 6 | 5 | ralab 3697 | . . 3
⊢
(∀𝑧 ∈
{𝑤 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑤 = 𝐶}𝜑 ↔ ∀𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 7 |  | ralcom4 3286 | . . . 4
⊢
(∀𝑥 ∈
𝐴 ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑧∀𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 8 |  | r19.23v 3183 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 9 | 8 | albii 1819 | . . . 4
⊢
(∀𝑧∀𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 10 | 7, 9 | bitr2i 276 | . . 3
⊢
(∀𝑧(∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 11 | 3, 6, 10 | 3bitri 297 | . 2
⊢
(∀𝑧 ∈
ran 𝐹𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 12 |  | ralcom4 3286 | . . . . . 6
⊢
(∀𝑦 ∈
𝐵 ∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ ∀𝑧∀𝑦 ∈ 𝐵 (𝑧 = 𝐶 → 𝜑)) | 
| 13 |  | r19.23v 3183 | . . . . . . 7
⊢
(∀𝑦 ∈
𝐵 (𝑧 = 𝐶 → 𝜑) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 14 | 13 | albii 1819 | . . . . . 6
⊢
(∀𝑧∀𝑦 ∈ 𝐵 (𝑧 = 𝐶 → 𝜑) ↔ ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 15 | 12, 14 | bitri 275 | . . . . 5
⊢
(∀𝑦 ∈
𝐵 ∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑)) | 
| 16 |  | nfv 1914 | . . . . . . . 8
⊢
Ⅎ𝑧𝜓 | 
| 17 |  | ralrnmpo.2 | . . . . . . . 8
⊢ (𝑧 = 𝐶 → (𝜑 ↔ 𝜓)) | 
| 18 | 16, 17 | ceqsalg 3517 | . . . . . . 7
⊢ (𝐶 ∈ 𝑉 → (∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ 𝜓)) | 
| 19 | 18 | ralimi 3083 | . . . . . 6
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → ∀𝑦 ∈ 𝐵 (∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ 𝜓)) | 
| 20 |  | ralbi 3103 | . . . . . 6
⊢
(∀𝑦 ∈
𝐵 (∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ 𝜓) → (∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ ∀𝑦 ∈ 𝐵 𝜓)) | 
| 21 | 19, 20 | syl 17 | . . . . 5
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∀𝑦 ∈ 𝐵 ∀𝑧(𝑧 = 𝐶 → 𝜑) ↔ ∀𝑦 ∈ 𝐵 𝜓)) | 
| 22 | 15, 21 | bitr3id 285 | . . . 4
⊢
(∀𝑦 ∈
𝐵 𝐶 ∈ 𝑉 → (∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑦 ∈ 𝐵 𝜓)) | 
| 23 | 22 | ralimi 3083 | . . 3
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → ∀𝑥 ∈ 𝐴 (∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑦 ∈ 𝐵 𝜓)) | 
| 24 |  | ralbi 3103 | . . 3
⊢
(∀𝑥 ∈
𝐴 (∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑦 ∈ 𝐵 𝜓) → (∀𝑥 ∈ 𝐴 ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | 
| 25 | 23, 24 | syl 17 | . 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑥 ∈ 𝐴 ∀𝑧(∃𝑦 ∈ 𝐵 𝑧 = 𝐶 → 𝜑) ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) | 
| 26 | 11, 25 | bitrid 283 | 1
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓)) |