![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ceqsralbv | Structured version Visualization version GIF version |
Description: Elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.) |
Ref | Expression |
---|---|
ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
ceqsralbv | ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
3 | 2 | ceqsrexbv 3639 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝜓)) |
4 | rexanali 3096 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑)) | |
5 | annim 403 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝜓) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) | |
6 | 3, 4, 5 | 3bitr3i 301 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) |
7 | 6 | con4bii 321 | 1 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∀wral 3055 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2704 df-cleq 2718 df-clel 2804 df-ral 3056 df-rex 3065 |
This theorem is referenced by: ref5 37695 |
Copyright terms: Public domain | W3C validator |