| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ceqsralbv | Structured version Visualization version GIF version | ||
| Description: Elimination of a restricted universal quantifier, using implicit substitution. (Contributed by Scott Fenton, 7-Dec-2020.) |
| Ref | Expression |
|---|---|
| ceqsrexv.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| ceqsralbv | ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ceqsrexv.1 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | notbid 318 | . . . 4 ⊢ (𝑥 = 𝐴 → (¬ 𝜑 ↔ ¬ 𝜓)) |
| 3 | 2 | ceqsrexbv 3606 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ (𝐴 ∈ 𝐵 ∧ ¬ 𝜓)) |
| 4 | rexanali 3086 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 (𝑥 = 𝐴 ∧ ¬ 𝜑) ↔ ¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑)) | |
| 5 | annim 403 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ¬ 𝜓) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) | |
| 6 | 3, 4, 5 | 3bitr3i 301 | . 2 ⊢ (¬ ∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ ¬ (𝐴 ∈ 𝐵 → 𝜓)) |
| 7 | 6 | con4bii 321 | 1 ⊢ (∀𝑥 ∈ 𝐵 (𝑥 = 𝐴 → 𝜑) ↔ (𝐴 ∈ 𝐵 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: ref5 38350 |
| Copyright terms: Public domain | W3C validator |