![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dford5 | Structured version Visualization version GIF version |
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
Ref | Expression |
---|---|
dford5 | ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson 7769 | . . 3 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
2 | ordtr 6378 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴)) |
4 | epweon 7761 | . . . 4 ⊢ E We On | |
5 | wess 5663 | . . . 4 ⊢ (𝐴 ⊆ On → ( E We On → E We 𝐴)) | |
6 | 4, 5 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ On → E We 𝐴) |
7 | df-ord 6367 | . . . . 5 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
8 | 7 | biimpri 227 | . . . 4 ⊢ ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴) |
9 | 8 | ancoms 459 | . . 3 ⊢ (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴) |
10 | 6, 9 | sylan 580 | . 2 ⊢ ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴) |
11 | 3, 10 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3948 Tr wtr 5265 E cep 5579 We wwe 5630 Ord word 6363 Oncon0 6364 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-ord 6367 df-on 6368 |
This theorem is referenced by: nosupno 27203 noinfno 27218 nadd2rabord 42125 nadd1rabord 42129 |
Copyright terms: Public domain | W3C validator |