Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford5 Structured version   Visualization version   GIF version

Theorem dford5 33671
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.)
Assertion
Ref Expression
dford5 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))

Proof of Theorem dford5
StepHypRef Expression
1 ordsson 7633 . . 3 (Ord 𝐴𝐴 ⊆ On)
2 ordtr 6280 . . 3 (Ord 𝐴 → Tr 𝐴)
31, 2jca 512 . 2 (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴))
4 epweon 7625 . . . 4 E We On
5 wess 5576 . . . 4 (𝐴 ⊆ On → ( E We On → E We 𝐴))
64, 5mpi 20 . . 3 (𝐴 ⊆ On → E We 𝐴)
7 df-ord 6269 . . . . 5 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
87biimpri 227 . . . 4 ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴)
98ancoms 459 . . 3 (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴)
106, 9sylan 580 . 2 ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴)
113, 10impbii 208 1 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wss 3887  Tr wtr 5191   E cep 5494   We wwe 5543  Ord word 6265  Oncon0 6266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-ord 6269  df-on 6270
This theorem is referenced by:  nosupno  33906  noinfno  33921
  Copyright terms: Public domain W3C validator