Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dford5 Structured version   Visualization version   GIF version

Theorem dford5 33386
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.)
Assertion
Ref Expression
dford5 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))

Proof of Theorem dford5
StepHypRef Expression
1 ordsson 7567 . . 3 (Ord 𝐴𝐴 ⊆ On)
2 ordtr 6227 . . 3 (Ord 𝐴 → Tr 𝐴)
31, 2jca 515 . 2 (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴))
4 epweon 7560 . . . 4 E We On
5 wess 5538 . . . 4 (𝐴 ⊆ On → ( E We On → E We 𝐴))
64, 5mpi 20 . . 3 (𝐴 ⊆ On → E We 𝐴)
7 df-ord 6216 . . . . 5 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
87biimpri 231 . . . 4 ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴)
98ancoms 462 . . 3 (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴)
106, 9sylan 583 . 2 ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴)
113, 10impbii 212 1 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  wss 3866  Tr wtr 5161   E cep 5459   We wwe 5508  Ord word 6212  Oncon0 6213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-11 2158  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-sb 2071  df-clab 2715  df-cleq 2729  df-clel 2816  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-tr 5162  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-ord 6216  df-on 6217
This theorem is referenced by:  nosupno  33643  noinfno  33658
  Copyright terms: Public domain W3C validator