Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5 | Structured version Visualization version GIF version |
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
Ref | Expression |
---|---|
dford5 | ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson 7633 | . . 3 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
2 | ordtr 6280 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴)) |
4 | epweon 7625 | . . . 4 ⊢ E We On | |
5 | wess 5576 | . . . 4 ⊢ (𝐴 ⊆ On → ( E We On → E We 𝐴)) | |
6 | 4, 5 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ On → E We 𝐴) |
7 | df-ord 6269 | . . . . 5 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
8 | 7 | biimpri 227 | . . . 4 ⊢ ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴) |
9 | 8 | ancoms 459 | . . 3 ⊢ (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴) |
10 | 6, 9 | sylan 580 | . 2 ⊢ ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴) |
11 | 3, 10 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3887 Tr wtr 5191 E cep 5494 We wwe 5543 Ord word 6265 Oncon0 6266 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-tr 5192 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-ord 6269 df-on 6270 |
This theorem is referenced by: nosupno 33906 noinfno 33921 |
Copyright terms: Public domain | W3C validator |