Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dford5 | Structured version Visualization version GIF version |
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
Ref | Expression |
---|---|
dford5 | ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordsson 7666 | . . 3 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
2 | ordtr 6295 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴)) |
4 | epweon 7658 | . . . 4 ⊢ E We On | |
5 | wess 5587 | . . . 4 ⊢ (𝐴 ⊆ On → ( E We On → E We 𝐴)) | |
6 | 4, 5 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ On → E We 𝐴) |
7 | df-ord 6284 | . . . . 5 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
8 | 7 | biimpri 227 | . . . 4 ⊢ ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴) |
9 | 8 | ancoms 459 | . . 3 ⊢ (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴) |
10 | 6, 9 | sylan 580 | . 2 ⊢ ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴) |
11 | 3, 10 | impbii 208 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ⊆ wss 3891 Tr wtr 5197 E cep 5505 We wwe 5554 Ord word 6280 Oncon0 6281 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1968 ax-7 2008 ax-8 2105 ax-9 2113 ax-ext 2706 ax-sep 5231 ax-nul 5238 ax-pr 5360 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1779 df-sb 2065 df-clab 2713 df-cleq 2727 df-clel 2813 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3357 df-v 3438 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4844 df-br 5081 df-opab 5143 df-tr 5198 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-we 5557 df-ord 6284 df-on 6285 |
This theorem is referenced by: nosupno 33965 noinfno 33980 |
Copyright terms: Public domain | W3C validator |