MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dford5 Structured version   Visualization version   GIF version

Theorem dford5 7783
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.)
Assertion
Ref Expression
dford5 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))

Proof of Theorem dford5
StepHypRef Expression
1 ordsson 7782 . . 3 (Ord 𝐴𝐴 ⊆ On)
2 ordtr 6371 . . 3 (Ord 𝐴 → Tr 𝐴)
31, 2jca 511 . 2 (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴))
4 epweon 7774 . . . 4 E We On
5 wess 5645 . . . 4 (𝐴 ⊆ On → ( E We On → E We 𝐴))
64, 5mpi 20 . . 3 (𝐴 ⊆ On → E We 𝐴)
7 df-ord 6360 . . . . 5 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
87biimpri 228 . . . 4 ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴)
98ancoms 458 . . 3 (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴)
106, 9sylan 580 . 2 ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴)
113, 10impbii 209 1 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3931  Tr wtr 5234   E cep 5557   We wwe 5610  Ord word 6356  Oncon0 6357
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-tr 5235  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-ord 6360  df-on 6361
This theorem is referenced by:  nosupno  27672  noinfno  27687  bdayon  28230  nadd2rabord  43376  nadd1rabord  43380
  Copyright terms: Public domain W3C validator