MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dford5 Structured version   Visualization version   GIF version

Theorem dford5 7803
Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.)
Assertion
Ref Expression
dford5 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))

Proof of Theorem dford5
StepHypRef Expression
1 ordsson 7802 . . 3 (Ord 𝐴𝐴 ⊆ On)
2 ordtr 6400 . . 3 (Ord 𝐴 → Tr 𝐴)
31, 2jca 511 . 2 (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴))
4 epweon 7794 . . . 4 E We On
5 wess 5675 . . . 4 (𝐴 ⊆ On → ( E We On → E We 𝐴))
64, 5mpi 20 . . 3 (𝐴 ⊆ On → E We 𝐴)
7 df-ord 6389 . . . . 5 (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴))
87biimpri 228 . . . 4 ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴)
98ancoms 458 . . 3 (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴)
106, 9sylan 580 . 2 ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴)
113, 10impbii 209 1 (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3963  Tr wtr 5265   E cep 5588   We wwe 5640  Ord word 6385  Oncon0 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-tr 5266  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-ord 6389  df-on 6390
This theorem is referenced by:  nosupno  27763  noinfno  27778  nadd2rabord  43375  nadd1rabord  43379
  Copyright terms: Public domain W3C validator