| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dford5 | Structured version Visualization version GIF version | ||
| Description: A class is ordinal iff it is a subclass of On and transitive. (Contributed by Scott Fenton, 21-Nov-2021.) |
| Ref | Expression |
|---|---|
| dford5 | ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordsson 7716 | . . 3 ⊢ (Ord 𝐴 → 𝐴 ⊆ On) | |
| 2 | ordtr 6320 | . . 3 ⊢ (Ord 𝐴 → Tr 𝐴) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (Ord 𝐴 → (𝐴 ⊆ On ∧ Tr 𝐴)) |
| 4 | epweon 7708 | . . . 4 ⊢ E We On | |
| 5 | wess 5600 | . . . 4 ⊢ (𝐴 ⊆ On → ( E We On → E We 𝐴)) | |
| 6 | 4, 5 | mpi 20 | . . 3 ⊢ (𝐴 ⊆ On → E We 𝐴) |
| 7 | df-ord 6309 | . . . . 5 ⊢ (Ord 𝐴 ↔ (Tr 𝐴 ∧ E We 𝐴)) | |
| 8 | 7 | biimpri 228 | . . . 4 ⊢ ((Tr 𝐴 ∧ E We 𝐴) → Ord 𝐴) |
| 9 | 8 | ancoms 458 | . . 3 ⊢ (( E We 𝐴 ∧ Tr 𝐴) → Ord 𝐴) |
| 10 | 6, 9 | sylan 580 | . 2 ⊢ ((𝐴 ⊆ On ∧ Tr 𝐴) → Ord 𝐴) |
| 11 | 3, 10 | impbii 209 | 1 ⊢ (Ord 𝐴 ↔ (𝐴 ⊆ On ∧ Tr 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3897 Tr wtr 5196 E cep 5513 We wwe 5566 Ord word 6305 Oncon0 6306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-tr 5197 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-ord 6309 df-on 6310 |
| This theorem is referenced by: nosupno 27642 noinfno 27657 bdayon 28209 nadd2rabord 43488 nadd1rabord 43492 |
| Copyright terms: Public domain | W3C validator |