![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetssfset | Structured version Visualization version GIF version |
Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
Ref | Expression |
---|---|
cfsetssfset | ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} | |
2 | ss2ab 4085 | . . 3 ⊢ ({𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∀𝑓((𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏) → 𝑓:𝐴⟶𝐵)) | |
3 | simpl 482 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏) → 𝑓:𝐴⟶𝐵) | |
4 | 2, 3 | mpgbir 1797 | . 2 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
5 | 1, 4 | eqsstri 4043 | 1 ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 {cab 2717 ∀wral 3067 ∃wrex 3076 ⊆ wss 3976 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ss 3993 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |