![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetssfset | Structured version Visualization version GIF version |
Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
Ref | Expression |
---|---|
cfsetssfset | ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.f | . 2 ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} | |
2 | ss2ab 4052 | . . 3 ⊢ ({𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} ↔ ∀𝑓((𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏) → 𝑓:𝐴⟶𝐵)) | |
3 | simpl 482 | . . 3 ⊢ ((𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏) → 𝑓:𝐴⟶𝐵) | |
4 | 2, 3 | mpgbir 1794 | . 2 ⊢ {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
5 | 1, 4 | eqsstri 4012 | 1 ⊢ 𝐹 ⊆ {𝑓 ∣ 𝑓:𝐴⟶𝐵} |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 {cab 2704 ∀wral 3056 ∃wrex 3065 ⊆ wss 3944 ⟶wf 6538 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-v 3471 df-in 3951 df-ss 3961 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |