Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetssfset Structured version   Visualization version   GIF version

Theorem cfsetssfset 47005
Description: The class of constant functions is a subclass of the class of functions. (Contributed by AV, 13-Sep-2024.)
Hypothesis
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
Assertion
Ref Expression
cfsetssfset 𝐹 ⊆ {𝑓𝑓:𝐴𝐵}

Proof of Theorem cfsetssfset
StepHypRef Expression
1 cfsetsnfsetfv.f . 2 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
2 ss2ab 4071 . . 3 ({𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵} ↔ ∀𝑓((𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏) → 𝑓:𝐴𝐵))
3 simpl 482 . . 3 ((𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏) → 𝑓:𝐴𝐵)
42, 3mpgbir 1795 . 2 {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)} ⊆ {𝑓𝑓:𝐴𝐵}
51, 4eqsstri 4029 1 𝐹 ⊆ {𝑓𝑓:𝐴𝐵}
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1536  {cab 2711  wral 3058  wrex 3067  wss 3962  wf 6558  cfv 6562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1776  df-nf 1780  df-sb 2062  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ss 3979
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator