Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetfv Structured version   Visualization version   GIF version

Theorem cfsetsnfsetfv 47058
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetfv ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑋,𝑎,𝑔   𝑔,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓,𝑏)   𝐵(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑧,𝑓,𝑎,𝑏)   𝑋(𝑥,𝑧,𝑓,𝑏)   𝑌(𝑥,𝑧,𝑓,𝑎,𝑏)

Proof of Theorem cfsetsnfsetfv
StepHypRef Expression
1 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
21a1i 11 . 2 ((𝐴𝑉𝑋𝐺) → 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌))))
3 fveq1 6857 . . . . 5 (𝑔 = 𝑋 → (𝑔𝑌) = (𝑋𝑌))
43adantr 480 . . . 4 ((𝑔 = 𝑋𝑎𝐴) → (𝑔𝑌) = (𝑋𝑌))
54mpteq2dva 5200 . . 3 (𝑔 = 𝑋 → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
65adantl 481 . 2 (((𝐴𝑉𝑋𝐺) ∧ 𝑔 = 𝑋) → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
7 simpr 484 . 2 ((𝐴𝑉𝑋𝐺) → 𝑋𝐺)
8 simpl 482 . . 3 ((𝐴𝑉𝑋𝐺) → 𝐴𝑉)
98mptexd 7198 . 2 ((𝐴𝑉𝑋𝐺) → (𝑎𝐴 ↦ (𝑋𝑌)) ∈ V)
102, 6, 7, 9fvmptd 6975 1 ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3447  {csn 4589  cmpt 5188  wf 6507  cfv 6511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  cfsetsnfsetf1  47060  cfsetsnfsetfo  47061
  Copyright terms: Public domain W3C validator