![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetfv | Structured version Visualization version GIF version |
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
Ref | Expression |
---|---|
cfsetsnfsetfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)))) |
3 | fveq1 6895 | . . . . 5 ⊢ (𝑔 = 𝑋 → (𝑔‘𝑌) = (𝑋‘𝑌)) | |
4 | 3 | adantr 479 | . . . 4 ⊢ ((𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) = (𝑋‘𝑌)) |
5 | 4 | mpteq2dva 5249 | . . 3 ⊢ (𝑔 = 𝑋 → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
6 | 5 | adantl 480 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) ∧ 𝑔 = 𝑋) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
7 | simpr 483 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝑋 ∈ 𝐺) | |
8 | simpl 481 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐴 ∈ 𝑉) | |
9 | 8 | mptexd 7236 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌)) ∈ V) |
10 | 2, 6, 7, 9 | fvmptd 7011 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 {cab 2702 ∀wral 3050 ∃wrex 3059 Vcvv 3461 {csn 4630 ↦ cmpt 5232 ⟶wf 6545 ‘cfv 6549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 |
This theorem is referenced by: cfsetsnfsetf1 46579 cfsetsnfsetfo 46580 |
Copyright terms: Public domain | W3C validator |