![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetfv | Structured version Visualization version GIF version |
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
Ref | Expression |
---|---|
cfsetsnfsetfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)))) |
3 | fveq1 6913 | . . . . 5 ⊢ (𝑔 = 𝑋 → (𝑔‘𝑌) = (𝑋‘𝑌)) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) = (𝑋‘𝑌)) |
5 | 4 | mpteq2dva 5251 | . . 3 ⊢ (𝑔 = 𝑋 → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) ∧ 𝑔 = 𝑋) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
7 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝑋 ∈ 𝐺) | |
8 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐴 ∈ 𝑉) | |
9 | 8 | mptexd 7251 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌)) ∈ V) |
10 | 2, 6, 7, 9 | fvmptd 7030 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cab 2714 ∀wral 3061 ∃wrex 3070 Vcvv 3481 {csn 4634 ↦ cmpt 5234 ⟶wf 6565 ‘cfv 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5288 ax-sep 5305 ax-nul 5315 ax-pr 5441 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-csb 3912 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-nul 4343 df-if 4535 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-iun 5001 df-br 5152 df-opab 5214 df-mpt 5235 df-id 5587 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 |
This theorem is referenced by: cfsetsnfsetf1 47037 cfsetsnfsetfo 47038 |
Copyright terms: Public domain | W3C validator |