Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetfv | Structured version Visualization version GIF version |
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
Ref | Expression |
---|---|
cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
Ref | Expression |
---|---|
cfsetsnfsetfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)))) |
3 | fveq1 6767 | . . . . 5 ⊢ (𝑔 = 𝑋 → (𝑔‘𝑌) = (𝑋‘𝑌)) | |
4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) = (𝑋‘𝑌)) |
5 | 4 | mpteq2dva 5178 | . . 3 ⊢ (𝑔 = 𝑋 → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
6 | 5 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) ∧ 𝑔 = 𝑋) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
7 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝑋 ∈ 𝐺) | |
8 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐴 ∈ 𝑉) | |
9 | 8 | mptexd 7094 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌)) ∈ V) |
10 | 2, 6, 7, 9 | fvmptd 6876 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 {cab 2716 ∀wral 3065 ∃wrex 3066 Vcvv 3430 {csn 4566 ↦ cmpt 5161 ⟶wf 6426 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 |
This theorem is referenced by: cfsetsnfsetf1 44504 cfsetsnfsetfo 44505 |
Copyright terms: Public domain | W3C validator |