Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetfv Structured version   Visualization version   GIF version

Theorem cfsetsnfsetfv 44795
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetfv ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑋,𝑎,𝑔   𝑔,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓,𝑏)   𝐵(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑧,𝑓,𝑎,𝑏)   𝑋(𝑥,𝑧,𝑓,𝑏)   𝑌(𝑥,𝑧,𝑓,𝑎,𝑏)

Proof of Theorem cfsetsnfsetfv
StepHypRef Expression
1 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
21a1i 11 . 2 ((𝐴𝑉𝑋𝐺) → 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌))))
3 fveq1 6803 . . . . 5 (𝑔 = 𝑋 → (𝑔𝑌) = (𝑋𝑌))
43adantr 482 . . . 4 ((𝑔 = 𝑋𝑎𝐴) → (𝑔𝑌) = (𝑋𝑌))
54mpteq2dva 5181 . . 3 (𝑔 = 𝑋 → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
65adantl 483 . 2 (((𝐴𝑉𝑋𝐺) ∧ 𝑔 = 𝑋) → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
7 simpr 486 . 2 ((𝐴𝑉𝑋𝐺) → 𝑋𝐺)
8 simpl 484 . . 3 ((𝐴𝑉𝑋𝐺) → 𝐴𝑉)
98mptexd 7132 . 2 ((𝐴𝑉𝑋𝐺) → (𝑎𝐴 ↦ (𝑋𝑌)) ∈ V)
102, 6, 7, 9fvmptd 6914 1 ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1539  wcel 2104  {cab 2713  wral 3062  wrex 3071  Vcvv 3437  {csn 4565  cmpt 5164  wf 6454  cfv 6458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3305  df-rab 3306  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466
This theorem is referenced by:  cfsetsnfsetf1  44797  cfsetsnfsetfo  44798
  Copyright terms: Public domain W3C validator