Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetfv Structured version   Visualization version   GIF version

Theorem cfsetsnfsetfv 47184
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetfv ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑋,𝑎,𝑔   𝑔,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓,𝑏)   𝐵(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑧,𝑓,𝑎,𝑏)   𝑋(𝑥,𝑧,𝑓,𝑏)   𝑌(𝑥,𝑧,𝑓,𝑎,𝑏)

Proof of Theorem cfsetsnfsetfv
StepHypRef Expression
1 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
21a1i 11 . 2 ((𝐴𝑉𝑋𝐺) → 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌))))
3 fveq1 6829 . . . . 5 (𝑔 = 𝑋 → (𝑔𝑌) = (𝑋𝑌))
43adantr 480 . . . 4 ((𝑔 = 𝑋𝑎𝐴) → (𝑔𝑌) = (𝑋𝑌))
54mpteq2dva 5188 . . 3 (𝑔 = 𝑋 → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
65adantl 481 . 2 (((𝐴𝑉𝑋𝐺) ∧ 𝑔 = 𝑋) → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
7 simpr 484 . 2 ((𝐴𝑉𝑋𝐺) → 𝑋𝐺)
8 simpl 482 . . 3 ((𝐴𝑉𝑋𝐺) → 𝐴𝑉)
98mptexd 7166 . 2 ((𝐴𝑉𝑋𝐺) → (𝑎𝐴 ↦ (𝑋𝑌)) ∈ V)
102, 6, 7, 9fvmptd 6944 1 ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wral 3048  wrex 3057  Vcvv 3437  {csn 4577  cmpt 5176  wf 6484  cfv 6488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496
This theorem is referenced by:  cfsetsnfsetf1  47186  cfsetsnfsetfo  47187
  Copyright terms: Public domain W3C validator