Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cfsetsnfsetfv Structured version   Visualization version   GIF version

Theorem cfsetsnfsetfv 47045
Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.)
Hypotheses
Ref Expression
cfsetsnfsetfv.f 𝐹 = {𝑓 ∣ (𝑓:𝐴𝐵 ∧ ∃𝑏𝐵𝑧𝐴 (𝑓𝑧) = 𝑏)}
cfsetsnfsetfv.g 𝐺 = {𝑥𝑥:{𝑌}⟶𝐵}
cfsetsnfsetfv.h 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
Assertion
Ref Expression
cfsetsnfsetfv ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Distinct variable groups:   𝐴,𝑎,𝑔   𝑔,𝐺   𝑔,𝑉   𝑋,𝑎,𝑔   𝑔,𝑌
Allowed substitution hints:   𝐴(𝑥,𝑧,𝑓,𝑏)   𝐵(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐹(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝐺(𝑥,𝑧,𝑓,𝑎,𝑏)   𝐻(𝑥,𝑧,𝑓,𝑔,𝑎,𝑏)   𝑉(𝑥,𝑧,𝑓,𝑎,𝑏)   𝑋(𝑥,𝑧,𝑓,𝑏)   𝑌(𝑥,𝑧,𝑓,𝑎,𝑏)

Proof of Theorem cfsetsnfsetfv
StepHypRef Expression
1 cfsetsnfsetfv.h . . 3 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌)))
21a1i 11 . 2 ((𝐴𝑉𝑋𝐺) → 𝐻 = (𝑔𝐺 ↦ (𝑎𝐴 ↦ (𝑔𝑌))))
3 fveq1 6825 . . . . 5 (𝑔 = 𝑋 → (𝑔𝑌) = (𝑋𝑌))
43adantr 480 . . . 4 ((𝑔 = 𝑋𝑎𝐴) → (𝑔𝑌) = (𝑋𝑌))
54mpteq2dva 5188 . . 3 (𝑔 = 𝑋 → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
65adantl 481 . 2 (((𝐴𝑉𝑋𝐺) ∧ 𝑔 = 𝑋) → (𝑎𝐴 ↦ (𝑔𝑌)) = (𝑎𝐴 ↦ (𝑋𝑌)))
7 simpr 484 . 2 ((𝐴𝑉𝑋𝐺) → 𝑋𝐺)
8 simpl 482 . . 3 ((𝐴𝑉𝑋𝐺) → 𝐴𝑉)
98mptexd 7164 . 2 ((𝐴𝑉𝑋𝐺) → (𝑎𝐴 ↦ (𝑋𝑌)) ∈ V)
102, 6, 7, 9fvmptd 6941 1 ((𝐴𝑉𝑋𝐺) → (𝐻𝑋) = (𝑎𝐴 ↦ (𝑋𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {cab 2707  wral 3044  wrex 3053  Vcvv 3438  {csn 4579  cmpt 5176  wf 6482  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  cfsetsnfsetf1  47047  cfsetsnfsetfo  47048
  Copyright terms: Public domain W3C validator