| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetfv | Structured version Visualization version GIF version | ||
| Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
| cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
| cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
| Ref | Expression |
|---|---|
| cfsetsnfsetfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)))) |
| 3 | fveq1 6821 | . . . . 5 ⊢ (𝑔 = 𝑋 → (𝑔‘𝑌) = (𝑋‘𝑌)) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) = (𝑋‘𝑌)) |
| 5 | 4 | mpteq2dva 5184 | . . 3 ⊢ (𝑔 = 𝑋 → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) ∧ 𝑔 = 𝑋) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| 7 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝑋 ∈ 𝐺) | |
| 8 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐴 ∈ 𝑉) | |
| 9 | 8 | mptexd 7158 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌)) ∈ V) |
| 10 | 2, 6, 7, 9 | fvmptd 6936 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 {csn 4576 ↦ cmpt 5172 ⟶wf 6477 ‘cfv 6481 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: cfsetsnfsetf1 47096 cfsetsnfsetfo 47097 |
| Copyright terms: Public domain | W3C validator |