| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cfsetsnfsetfv | Structured version Visualization version GIF version | ||
| Description: The function value of the mapping of the class of singleton functions into the class of constant functions. (Contributed by AV, 13-Sep-2024.) |
| Ref | Expression |
|---|---|
| cfsetsnfsetfv.f | ⊢ 𝐹 = {𝑓 ∣ (𝑓:𝐴⟶𝐵 ∧ ∃𝑏 ∈ 𝐵 ∀𝑧 ∈ 𝐴 (𝑓‘𝑧) = 𝑏)} |
| cfsetsnfsetfv.g | ⊢ 𝐺 = {𝑥 ∣ 𝑥:{𝑌}⟶𝐵} |
| cfsetsnfsetfv.h | ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) |
| Ref | Expression |
|---|---|
| cfsetsnfsetfv | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfsetsnfsetfv.h | . . 3 ⊢ 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌))) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐻 = (𝑔 ∈ 𝐺 ↦ (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)))) |
| 3 | fveq1 6829 | . . . . 5 ⊢ (𝑔 = 𝑋 → (𝑔‘𝑌) = (𝑋‘𝑌)) | |
| 4 | 3 | adantr 480 | . . . 4 ⊢ ((𝑔 = 𝑋 ∧ 𝑎 ∈ 𝐴) → (𝑔‘𝑌) = (𝑋‘𝑌)) |
| 5 | 4 | mpteq2dva 5188 | . . 3 ⊢ (𝑔 = 𝑋 → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) ∧ 𝑔 = 𝑋) → (𝑎 ∈ 𝐴 ↦ (𝑔‘𝑌)) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| 7 | simpr 484 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝑋 ∈ 𝐺) | |
| 8 | simpl 482 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → 𝐴 ∈ 𝑉) | |
| 9 | 8 | mptexd 7166 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌)) ∈ V) |
| 10 | 2, 6, 7, 9 | fvmptd 6944 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑋 ∈ 𝐺) → (𝐻‘𝑋) = (𝑎 ∈ 𝐴 ↦ (𝑋‘𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 {cab 2711 ∀wral 3048 ∃wrex 3057 Vcvv 3437 {csn 4577 ↦ cmpt 5176 ⟶wf 6484 ‘cfv 6488 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6444 df-fun 6490 df-fn 6491 df-f 6492 df-f1 6493 df-fo 6494 df-f1o 6495 df-fv 6496 |
| This theorem is referenced by: cfsetsnfsetf1 47186 cfsetsnfsetfo 47187 |
| Copyright terms: Public domain | W3C validator |