|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > clelsb1f | Structured version Visualization version GIF version | ||
| Description: Substitution for the first argument of the membership predicate in an atomic formula (class version of elsb1 2115). Usage of this theorem is discouraged because it depends on ax-13 2376. See clelsb1fw 2908 not requiring ax-13 2376, but extra disjoint variables. (Contributed by Rodolfo Medina, 28-Apr-2010.) (Proof shortened by Andrew Salmon, 14-Jun-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.) (Proof shortened by Wolf Lammen, 7-May-2023.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| clelsb1f.1 | ⊢ Ⅎ𝑥𝐴 | 
| Ref | Expression | 
|---|---|
| clelsb1f | ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | clelsb1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 2 | 1 | nfcri 2896 | . . 3 ⊢ Ⅎ𝑥 𝑤 ∈ 𝐴 | 
| 3 | 2 | sbco2 2515 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑤]𝑤 ∈ 𝐴) | 
| 4 | clelsb1 2867 | . . 3 ⊢ ([𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴) | |
| 5 | 4 | sbbii 2075 | . 2 ⊢ ([𝑦 / 𝑥][𝑥 / 𝑤]𝑤 ∈ 𝐴 ↔ [𝑦 / 𝑥]𝑥 ∈ 𝐴) | 
| 6 | clelsb1 2867 | . 2 ⊢ ([𝑦 / 𝑤]𝑤 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | |
| 7 | 3, 5, 6 | 3bitr3i 301 | 1 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 [wsb 2063 ∈ wcel 2107 Ⅎwnfc 2889 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 ax-13 2376 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clel 2815 df-nfc 2891 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |