Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptdF | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 6869 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
fmptdF.p | ⊢ Ⅎ𝑥𝜑 |
fmptdF.a | ⊢ Ⅎ𝑥𝐴 |
fmptdF.c | ⊢ Ⅎ𝑥𝐶 |
fmptdF.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdF.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdF | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdF.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | sbimi 2079 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑦 / 𝑥]𝐵 ∈ 𝐶) |
3 | sban 2085 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴)) | |
4 | fmptdF.p | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | sbf 2268 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | fmptdF.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
7 | 6 | clelsb3fw 2923 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
8 | 5, 7 | anbi12i 629 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
9 | 3, 8 | bitri 278 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
10 | sbsbc 3700 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝑦 / 𝑥]𝐵 ∈ 𝐶) | |
11 | sbcel12 4305 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶) | |
12 | vex 3413 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
13 | fmptdF.c | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
14 | 12, 13 | csbgfi 3825 | . . . . . . . 8 ⊢ ⦋𝑦 / 𝑥⦌𝐶 = 𝐶 |
15 | 14 | eleq2i 2843 | . . . . . . 7 ⊢ (⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
16 | 11, 15 | bitri 278 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
17 | 10, 16 | bitri 278 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
18 | 2, 9, 17 | 3imtr3i 294 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
19 | 18 | ralrimiva 3113 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
20 | nfcv 2919 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
21 | nfcv 2919 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
22 | nfcsb1v 3829 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
23 | csbeq1a 3819 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
24 | 6, 20, 21, 22, 23 | cbvmptf 5131 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
25 | 24 | fmpt 6865 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
26 | 19, 25 | sylib 221 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
27 | fmptdF.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
28 | 27 | feq1i 6489 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
29 | 26, 28 | sylibr 237 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 Ⅎwnf 1785 [wsb 2069 ∈ wcel 2111 Ⅎwnfc 2899 ∀wral 3070 [wsbc 3696 ⦋csb 3805 ↦ cmpt 5112 ⟶wf 6331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-fv 6343 |
This theorem is referenced by: fmptcof2 30518 esumcl 31517 esumid 31531 esumgsum 31532 esumval 31533 esumel 31534 esumsplit 31540 esumaddf 31548 esumss 31559 esumpfinvalf 31563 |
Copyright terms: Public domain | W3C validator |