Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdF Structured version   Visualization version   GIF version

Theorem fmptdF 32673
Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 7134 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
fmptdF.p 𝑥𝜑
fmptdF.a 𝑥𝐴
fmptdF.c 𝑥𝐶
fmptdF.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdF.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdF (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdF
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptdF.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝐶)
21sbimi 2072 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥𝐴) → [𝑦 / 𝑥]𝐵𝐶)
3 sban 2078 . . . . . 6 ([𝑦 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥𝐴))
4 fmptdF.p . . . . . . . 8 𝑥𝜑
54sbf 2269 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜑)
6 fmptdF.a . . . . . . . 8 𝑥𝐴
76clelsb1fw 2907 . . . . . . 7 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
85, 7anbi12i 628 . . . . . 6 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥𝐴) ↔ (𝜑𝑦𝐴))
93, 8bitri 275 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴))
10 sbsbc 3795 . . . . . 6 ([𝑦 / 𝑥]𝐵𝐶[𝑦 / 𝑥]𝐵𝐶)
11 sbcel12 4417 . . . . . . 7 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
12 vex 3482 . . . . . . . . 9 𝑦 ∈ V
13 fmptdF.c . . . . . . . . 9 𝑥𝐶
1412, 13csbgfi 3929 . . . . . . . 8 𝑦 / 𝑥𝐶 = 𝐶
1514eleq2i 2831 . . . . . . 7 (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶𝑦 / 𝑥𝐵𝐶)
1611, 15bitri 275 . . . . . 6 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝐶)
1710, 16bitri 275 . . . . 5 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝐶)
182, 9, 173imtr3i 291 . . . 4 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝐶)
1918ralrimiva 3144 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶)
20 nfcv 2903 . . . . 5 𝑦𝐴
21 nfcv 2903 . . . . 5 𝑦𝐵
22 nfcsb1v 3933 . . . . 5 𝑥𝑦 / 𝑥𝐵
23 csbeq1a 3922 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
246, 20, 21, 22, 23cbvmptf 5257 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
2524fmpt 7130 . . 3 (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
2619, 25sylib 218 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
27 fmptdF.2 . . 3 𝐹 = (𝑥𝐴𝐵)
2827feq1i 6728 . 2 (𝐹:𝐴𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
2926, 28sylibr 234 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wnf 1780  [wsb 2062  wcel 2106  wnfc 2888  wral 3059  [wsbc 3791  csb 3908  cmpt 5231  wf 6559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-fun 6565  df-fn 6566  df-f 6567
This theorem is referenced by:  fmptcof2  32674  esumcl  34011  esumid  34025  esumgsum  34026  esumval  34027  esumel  34028  esumsplit  34034  esumaddf  34042  esumss  34053  esumpfinvalf  34057
  Copyright terms: Public domain W3C validator