Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptdF | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 6982 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
fmptdF.p | ⊢ Ⅎ𝑥𝜑 |
fmptdF.a | ⊢ Ⅎ𝑥𝐴 |
fmptdF.c | ⊢ Ⅎ𝑥𝐶 |
fmptdF.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdF.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdF | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdF.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | sbimi 2080 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑦 / 𝑥]𝐵 ∈ 𝐶) |
3 | sban 2086 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴)) | |
4 | fmptdF.p | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | sbf 2266 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | fmptdF.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
7 | 6 | clelsb1fw 2912 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
8 | 5, 7 | anbi12i 626 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
9 | 3, 8 | bitri 274 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
10 | sbsbc 3723 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝑦 / 𝑥]𝐵 ∈ 𝐶) | |
11 | sbcel12 4347 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶) | |
12 | vex 3434 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
13 | fmptdF.c | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
14 | 12, 13 | csbgfi 3857 | . . . . . . . 8 ⊢ ⦋𝑦 / 𝑥⦌𝐶 = 𝐶 |
15 | 14 | eleq2i 2831 | . . . . . . 7 ⊢ (⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
16 | 11, 15 | bitri 274 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
17 | 10, 16 | bitri 274 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
18 | 2, 9, 17 | 3imtr3i 290 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
19 | 18 | ralrimiva 3109 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
20 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
21 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
22 | nfcsb1v 3861 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
23 | csbeq1a 3850 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
24 | 6, 20, 21, 22, 23 | cbvmptf 5187 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
25 | 24 | fmpt 6978 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
26 | 19, 25 | sylib 217 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
27 | fmptdF.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
28 | 27 | feq1i 6587 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
29 | 26, 28 | sylibr 233 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 [wsb 2070 ∈ wcel 2109 Ⅎwnfc 2888 ∀wral 3065 [wsbc 3719 ⦋csb 3836 ↦ cmpt 5161 ⟶wf 6426 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-fun 6432 df-fn 6433 df-f 6434 |
This theorem is referenced by: fmptcof2 30973 esumcl 31977 esumid 31991 esumgsum 31992 esumval 31993 esumel 31994 esumsplit 32000 esumaddf 32008 esumss 32019 esumpfinvalf 32023 |
Copyright terms: Public domain | W3C validator |