![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptdF | Structured version Visualization version GIF version |
Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 7148 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
Ref | Expression |
---|---|
fmptdF.p | ⊢ Ⅎ𝑥𝜑 |
fmptdF.a | ⊢ Ⅎ𝑥𝐴 |
fmptdF.c | ⊢ Ⅎ𝑥𝐶 |
fmptdF.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
fmptdF.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
Ref | Expression |
---|---|
fmptdF | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fmptdF.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
2 | 1 | sbimi 2074 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑦 / 𝑥]𝐵 ∈ 𝐶) |
3 | sban 2080 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴)) | |
4 | fmptdF.p | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
5 | 4 | sbf 2272 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
6 | fmptdF.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
7 | 6 | clelsb1fw 2912 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
8 | 5, 7 | anbi12i 627 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
9 | 3, 8 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
10 | sbsbc 3808 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝑦 / 𝑥]𝐵 ∈ 𝐶) | |
11 | sbcel12 4434 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶) | |
12 | vex 3492 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
13 | fmptdF.c | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
14 | 12, 13 | csbgfi 3942 | . . . . . . . 8 ⊢ ⦋𝑦 / 𝑥⦌𝐶 = 𝐶 |
15 | 14 | eleq2i 2836 | . . . . . . 7 ⊢ (⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
16 | 11, 15 | bitri 275 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
17 | 10, 16 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
18 | 2, 9, 17 | 3imtr3i 291 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
19 | 18 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
20 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
21 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
22 | nfcsb1v 3946 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
23 | csbeq1a 3935 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
24 | 6, 20, 21, 22, 23 | cbvmptf 5275 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
25 | 24 | fmpt 7144 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
26 | 19, 25 | sylib 218 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
27 | fmptdF.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
28 | 27 | feq1i 6738 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
29 | 26, 28 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 [wsb 2064 ∈ wcel 2108 Ⅎwnfc 2893 ∀wral 3067 [wsbc 3804 ⦋csb 3921 ↦ cmpt 5249 ⟶wf 6569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-fun 6575 df-fn 6576 df-f 6577 |
This theorem is referenced by: fmptcof2 32675 esumcl 33994 esumid 34008 esumgsum 34009 esumval 34010 esumel 34011 esumsplit 34017 esumaddf 34025 esumss 34036 esumpfinvalf 34040 |
Copyright terms: Public domain | W3C validator |