| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fmptdF | Structured version Visualization version GIF version | ||
| Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 7089 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.) |
| Ref | Expression |
|---|---|
| fmptdF.p | ⊢ Ⅎ𝑥𝜑 |
| fmptdF.a | ⊢ Ⅎ𝑥𝐴 |
| fmptdF.c | ⊢ Ⅎ𝑥𝐶 |
| fmptdF.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) |
| fmptdF.2 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| Ref | Expression |
|---|---|
| fmptdF | ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fmptdF.1 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) | |
| 2 | 1 | sbimi 2075 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) → [𝑦 / 𝑥]𝐵 ∈ 𝐶) |
| 3 | sban 2081 | . . . . . 6 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴)) | |
| 4 | fmptdF.p | . . . . . . . 8 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 4 | sbf 2271 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝜑 ↔ 𝜑) |
| 6 | fmptdF.a | . . . . . . . 8 ⊢ Ⅎ𝑥𝐴 | |
| 7 | 6 | clelsb1fw 2896 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴) |
| 8 | 5, 7 | anbi12i 628 | . . . . . 6 ⊢ (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
| 9 | 3, 8 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥](𝜑 ∧ 𝑥 ∈ 𝐴) ↔ (𝜑 ∧ 𝑦 ∈ 𝐴)) |
| 10 | sbsbc 3760 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ [𝑦 / 𝑥]𝐵 ∈ 𝐶) | |
| 11 | sbcel12 4377 | . . . . . . 7 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶) | |
| 12 | vex 3454 | . . . . . . . . 9 ⊢ 𝑦 ∈ V | |
| 13 | fmptdF.c | . . . . . . . . 9 ⊢ Ⅎ𝑥𝐶 | |
| 14 | 12, 13 | csbgfi 3885 | . . . . . . . 8 ⊢ ⦋𝑦 / 𝑥⦌𝐶 = 𝐶 |
| 15 | 14 | eleq2i 2821 | . . . . . . 7 ⊢ (⦋𝑦 / 𝑥⦌𝐵 ∈ ⦋𝑦 / 𝑥⦌𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
| 16 | 11, 15 | bitri 275 | . . . . . 6 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
| 17 | 10, 16 | bitri 275 | . . . . 5 ⊢ ([𝑦 / 𝑥]𝐵 ∈ 𝐶 ↔ ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
| 18 | 2, 9, 17 | 3imtr3i 291 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐴) → ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
| 19 | 18 | ralrimiva 3126 | . . 3 ⊢ (𝜑 → ∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶) |
| 20 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝐴 | |
| 21 | nfcv 2892 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 22 | nfcsb1v 3889 | . . . . 5 ⊢ Ⅎ𝑥⦋𝑦 / 𝑥⦌𝐵 | |
| 23 | csbeq1a 3879 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐵 = ⦋𝑦 / 𝑥⦌𝐵) | |
| 24 | 6, 20, 21, 22, 23 | cbvmptf 5210 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ ⦋𝑦 / 𝑥⦌𝐵) |
| 25 | 24 | fmpt 7085 | . . 3 ⊢ (∀𝑦 ∈ 𝐴 ⦋𝑦 / 𝑥⦌𝐵 ∈ 𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 26 | 19, 25 | sylib 218 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 27 | fmptdF.2 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 28 | 27 | feq1i 6682 | . 2 ⊢ (𝐹:𝐴⟶𝐶 ↔ (𝑥 ∈ 𝐴 ↦ 𝐵):𝐴⟶𝐶) |
| 29 | 26, 28 | sylibr 234 | 1 ⊢ (𝜑 → 𝐹:𝐴⟶𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 [wsb 2065 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 [wsbc 3756 ⦋csb 3865 ↦ cmpt 5191 ⟶wf 6510 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-fun 6516 df-fn 6517 df-f 6518 |
| This theorem is referenced by: fmptcof2 32588 esumcl 34027 esumid 34041 esumgsum 34042 esumval 34043 esumel 34044 esumsplit 34050 esumaddf 34058 esumss 34069 esumpfinvalf 34073 |
| Copyright terms: Public domain | W3C validator |