Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fmptdF Structured version   Visualization version   GIF version

Theorem fmptdF 30401
Description: Domain and codomain of the mapping operation; deduction form. This version of fmptd 6878 uses bound-variable hypothesis instead of distinct variable conditions. (Contributed by Thierry Arnoux, 28-Mar-2017.)
Hypotheses
Ref Expression
fmptdF.p 𝑥𝜑
fmptdF.a 𝑥𝐴
fmptdF.c 𝑥𝐶
fmptdF.1 ((𝜑𝑥𝐴) → 𝐵𝐶)
fmptdF.2 𝐹 = (𝑥𝐴𝐵)
Assertion
Ref Expression
fmptdF (𝜑𝐹:𝐴𝐶)

Proof of Theorem fmptdF
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 fmptdF.1 . . . . . 6 ((𝜑𝑥𝐴) → 𝐵𝐶)
21sbimi 2079 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥𝐴) → [𝑦 / 𝑥]𝐵𝐶)
3 sban 2086 . . . . . 6 ([𝑦 / 𝑥](𝜑𝑥𝐴) ↔ ([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥𝐴))
4 fmptdF.p . . . . . . . 8 𝑥𝜑
54sbf 2271 . . . . . . 7 ([𝑦 / 𝑥]𝜑𝜑)
6 fmptdF.a . . . . . . . 8 𝑥𝐴
76clelsb3fw 2981 . . . . . . 7 ([𝑦 / 𝑥]𝑥𝐴𝑦𝐴)
85, 7anbi12i 628 . . . . . 6 (([𝑦 / 𝑥]𝜑 ∧ [𝑦 / 𝑥]𝑥𝐴) ↔ (𝜑𝑦𝐴))
93, 8bitri 277 . . . . 5 ([𝑦 / 𝑥](𝜑𝑥𝐴) ↔ (𝜑𝑦𝐴))
10 sbsbc 3776 . . . . . 6 ([𝑦 / 𝑥]𝐵𝐶[𝑦 / 𝑥]𝐵𝐶)
11 sbcel12 4360 . . . . . . 7 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶)
12 vex 3497 . . . . . . . . 9 𝑦 ∈ V
13 fmptdF.c . . . . . . . . 9 𝑥𝐶
1412, 13csbgfi 3903 . . . . . . . 8 𝑦 / 𝑥𝐶 = 𝐶
1514eleq2i 2904 . . . . . . 7 (𝑦 / 𝑥𝐵𝑦 / 𝑥𝐶𝑦 / 𝑥𝐵𝐶)
1611, 15bitri 277 . . . . . 6 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝐶)
1710, 16bitri 277 . . . . 5 ([𝑦 / 𝑥]𝐵𝐶𝑦 / 𝑥𝐵𝐶)
182, 9, 173imtr3i 293 . . . 4 ((𝜑𝑦𝐴) → 𝑦 / 𝑥𝐵𝐶)
1918ralrimiva 3182 . . 3 (𝜑 → ∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶)
20 nfcv 2977 . . . . 5 𝑦𝐴
21 nfcv 2977 . . . . 5 𝑦𝐵
22 nfcsb1v 3907 . . . . 5 𝑥𝑦 / 𝑥𝐵
23 csbeq1a 3897 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
246, 20, 21, 22, 23cbvmptf 5165 . . . 4 (𝑥𝐴𝐵) = (𝑦𝐴𝑦 / 𝑥𝐵)
2524fmpt 6874 . . 3 (∀𝑦𝐴 𝑦 / 𝑥𝐵𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
2619, 25sylib 220 . 2 (𝜑 → (𝑥𝐴𝐵):𝐴𝐶)
27 fmptdF.2 . . 3 𝐹 = (𝑥𝐴𝐵)
2827feq1i 6505 . 2 (𝐹:𝐴𝐶 ↔ (𝑥𝐴𝐵):𝐴𝐶)
2926, 28sylibr 236 1 (𝜑𝐹:𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wnf 1784  [wsb 2069  wcel 2114  wnfc 2961  wral 3138  [wsbc 3772  csb 3883  cmpt 5146  wf 6351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-fv 6363
This theorem is referenced by:  fmptcof2  30402  esumcl  31289  esumid  31303  esumgsum  31304  esumval  31305  esumel  31306  esumsplit  31312  esumaddf  31320  esumss  31331  esumpfinvalf  31335
  Copyright terms: Public domain W3C validator