Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sbccom2f Structured version   Visualization version   GIF version

Theorem sbccom2f 38133
Description: Commutative law for double class substitution, with nonfree variable condition. (Contributed by Giovanni Mascellani, 31-May-2019.)
Hypotheses
Ref Expression
sbccom2f.1 𝐴 ∈ V
sbccom2f.2 𝑦𝐴
Assertion
Ref Expression
sbccom2f ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem sbccom2f
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 sbccow 3811 . . . 4 ([𝐵 / 𝑧][𝑧 / 𝑦]𝜑[𝐵 / 𝑦]𝜑)
21bicomi 224 . . 3 ([𝐵 / 𝑦]𝜑[𝐵 / 𝑧][𝑧 / 𝑦]𝜑)
32sbcbii 3846 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥][𝐵 / 𝑧][𝑧 / 𝑦]𝜑)
4 sbccom2f.1 . . 3 𝐴 ∈ V
54sbccom2 38132 . 2 ([𝐴 / 𝑥][𝐵 / 𝑧][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
6 vex 3484 . . . . . . 7 𝑧 ∈ V
76sbccom2 38132 . . . . . 6 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
8 sbccom2f.2 . . . . . . . 8 𝑦𝐴
96, 8csbgfi 3919 . . . . . . 7 𝑧 / 𝑦𝐴 = 𝐴
10 dfsbcq 3790 . . . . . . 7 (𝑧 / 𝑦𝐴 = 𝐴 → ([𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑))
119, 10ax-mp 5 . . . . . 6 ([𝑧 / 𝑦𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
127, 11bitri 275 . . . . 5 ([𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥][𝑧 / 𝑦]𝜑)
1312bicomi 224 . . . 4 ([𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
1413sbcbii 3846 . . 3 ([𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑧][𝑧 / 𝑦][𝐴 / 𝑥]𝜑)
15 sbccow 3811 . . 3 ([𝐴 / 𝑥𝐵 / 𝑧][𝑧 / 𝑦][𝐴 / 𝑥]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
1614, 15bitri 275 . 2 ([𝐴 / 𝑥𝐵 / 𝑧][𝐴 / 𝑥][𝑧 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
173, 5, 163bitri 297 1 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐴 / 𝑥𝐵 / 𝑦][𝐴 / 𝑥]𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1540  wcel 2108  wnfc 2890  Vcvv 3480  [wsbc 3788  csb 3899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-v 3482  df-sbc 3789  df-csb 3900
This theorem is referenced by:  sbccom2fi  38134
  Copyright terms: Public domain W3C validator