![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem2 | Structured version Visualization version GIF version |
Description: Lemma for currysetALT 36321. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
currysetlem2.def | ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} |
Ref | Expression |
---|---|
currysetlem2 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | currysetlem2.def | . . . 4 ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
2 | 1 | currysetlem1 36318 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
3 | 2 | biimpd 228 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → (𝑋 ∈ 𝑋 → 𝜑))) |
4 | 3 | pm2.43d 53 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 → 𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 {cab 2701 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-v 3468 |
This theorem is referenced by: currysetlem3 36320 |
Copyright terms: Public domain | W3C validator |