Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetlem1 Structured version   Visualization version   GIF version

Theorem currysetlem1 36132
Description: Lemma for currysetALT 36135. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
Hypothesis
Ref Expression
currysetlem2.def 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
Assertion
Ref Expression
currysetlem1 (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem currysetlem1
StepHypRef Expression
1 currysetlem2.def . . . 4 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
21eqcomi 2740 . . 3 {𝑥 ∣ (𝑥𝑥𝜑)} = 𝑋
32eleq2i 2824 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ 𝑋𝑋)
4 nfab1 2904 . . . 4 𝑥{𝑥 ∣ (𝑥𝑥𝜑)}
51, 4nfcxfr 2900 . . 3 𝑥𝑋
65, 5nfel 2916 . . . 4 𝑥 𝑋𝑋
7 nfv 1916 . . . 4 𝑥𝜑
86, 7nfim 1898 . . 3 𝑥(𝑋𝑋𝜑)
9 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
109, 9eleq12d 2826 . . . 4 (𝑥 = 𝑋 → (𝑥𝑥𝑋𝑋))
1110imbi1d 340 . . 3 (𝑥 = 𝑋 → ((𝑥𝑥𝜑) ↔ (𝑋𝑋𝜑)))
125, 8, 11elabgf 3665 . 2 (𝑋𝑉 → (𝑋 ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ (𝑋𝑋𝜑)))
133, 12bitr3id 284 1 (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1540  wcel 2105  {cab 2708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1543  df-ex 1781  df-nf 1785  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-v 3475
This theorem is referenced by:  currysetlem2  36133  currysetlem3  36134
  Copyright terms: Public domain W3C validator