![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem1 | Structured version Visualization version GIF version |
Description: Lemma for currysetALT 36135. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
currysetlem2.def | ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} |
Ref | Expression |
---|---|
currysetlem1 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | currysetlem2.def | . . . 4 ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
2 | 1 | eqcomi 2740 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = 𝑋 |
3 | 2 | eleq2i 2824 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ 𝑋 ∈ 𝑋) |
4 | nfab1 2904 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
5 | 1, 4 | nfcxfr 2900 | . . 3 ⊢ Ⅎ𝑥𝑋 |
6 | 5, 5 | nfel 2916 | . . . 4 ⊢ Ⅎ𝑥 𝑋 ∈ 𝑋 |
7 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
8 | 6, 7 | nfim 1898 | . . 3 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑋 → 𝜑) |
9 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
10 | 9, 9 | eleq12d 2826 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑥 ↔ 𝑋 ∈ 𝑋)) |
11 | 10 | imbi1d 340 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑥 → 𝜑) ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
12 | 5, 8, 11 | elabgf 3665 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
13 | 3, 12 | bitr3id 284 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1540 ∈ wcel 2105 {cab 2708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-v 3475 |
This theorem is referenced by: currysetlem2 36133 currysetlem3 36134 |
Copyright terms: Public domain | W3C validator |