Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  currysetlem1 Structured version   Visualization version   GIF version

Theorem currysetlem1 36913
Description: Lemma for currysetALT 36916. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.)
Hypothesis
Ref Expression
currysetlem2.def 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
Assertion
Ref Expression
currysetlem1 (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem currysetlem1
StepHypRef Expression
1 currysetlem2.def . . . 4 𝑋 = {𝑥 ∣ (𝑥𝑥𝜑)}
21eqcomi 2749 . . 3 {𝑥 ∣ (𝑥𝑥𝜑)} = 𝑋
32eleq2i 2836 . 2 (𝑋 ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ 𝑋𝑋)
4 nfab1 2910 . . . 4 𝑥{𝑥 ∣ (𝑥𝑥𝜑)}
51, 4nfcxfr 2906 . . 3 𝑥𝑋
65, 5nfel 2923 . . . 4 𝑥 𝑋𝑋
7 nfv 1913 . . . 4 𝑥𝜑
86, 7nfim 1895 . . 3 𝑥(𝑋𝑋𝜑)
9 id 22 . . . . 5 (𝑥 = 𝑋𝑥 = 𝑋)
109, 9eleq12d 2838 . . . 4 (𝑥 = 𝑋 → (𝑥𝑥𝑋𝑋))
1110imbi1d 341 . . 3 (𝑥 = 𝑋 → ((𝑥𝑥𝜑) ↔ (𝑋𝑋𝜑)))
125, 8, 11elabgf 3688 . 2 (𝑋𝑉 → (𝑋 ∈ {𝑥 ∣ (𝑥𝑥𝜑)} ↔ (𝑋𝑋𝜑)))
133, 12bitr3id 285 1 (𝑋𝑉 → (𝑋𝑋 ↔ (𝑋𝑋𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  {cab 2717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-v 3490
This theorem is referenced by:  currysetlem2  36914  currysetlem3  36915
  Copyright terms: Public domain W3C validator