| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for currysetALT 36983. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| currysetlem2.def | ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} |
| Ref | Expression |
|---|---|
| currysetlem1 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | currysetlem2.def | . . . 4 ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
| 2 | 1 | eqcomi 2740 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = 𝑋 |
| 3 | 2 | eleq2i 2823 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ 𝑋 ∈ 𝑋) |
| 4 | nfab1 2896 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
| 5 | 1, 4 | nfcxfr 2892 | . . 3 ⊢ Ⅎ𝑥𝑋 |
| 6 | 5, 5 | nfel 2909 | . . . 4 ⊢ Ⅎ𝑥 𝑋 ∈ 𝑋 |
| 7 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 8 | 6, 7 | nfim 1897 | . . 3 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑋 → 𝜑) |
| 9 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 10 | 9, 9 | eleq12d 2825 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑥 ↔ 𝑋 ∈ 𝑋)) |
| 11 | 10 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑥 → 𝜑) ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| 12 | 5, 8, 11 | elabgf 3630 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| 13 | 3, 12 | bitr3id 285 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 {cab 2709 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-v 3438 |
| This theorem is referenced by: currysetlem2 36981 currysetlem3 36982 |
| Copyright terms: Public domain | W3C validator |