| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > currysetlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for currysetALT 36910. (Contributed by BJ, 23-Sep-2023.) This proof is intuitionistically valid. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| currysetlem2.def | ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} |
| Ref | Expression |
|---|---|
| currysetlem1 | ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | currysetlem2.def | . . . 4 ⊢ 𝑋 = {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
| 2 | 1 | eqcomi 2743 | . . 3 ⊢ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} = 𝑋 |
| 3 | 2 | eleq2i 2825 | . 2 ⊢ (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ 𝑋 ∈ 𝑋) |
| 4 | nfab1 2899 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} | |
| 5 | 1, 4 | nfcxfr 2895 | . . 3 ⊢ Ⅎ𝑥𝑋 |
| 6 | 5, 5 | nfel 2912 | . . . 4 ⊢ Ⅎ𝑥 𝑋 ∈ 𝑋 |
| 7 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 8 | 6, 7 | nfim 1895 | . . 3 ⊢ Ⅎ𝑥(𝑋 ∈ 𝑋 → 𝜑) |
| 9 | id 22 | . . . . 5 ⊢ (𝑥 = 𝑋 → 𝑥 = 𝑋) | |
| 10 | 9, 9 | eleq12d 2827 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑥 ∈ 𝑥 ↔ 𝑋 ∈ 𝑋)) |
| 11 | 10 | imbi1d 341 | . . 3 ⊢ (𝑥 = 𝑋 → ((𝑥 ∈ 𝑥 → 𝜑) ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| 12 | 5, 8, 11 | elabgf 3657 | . 2 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ {𝑥 ∣ (𝑥 ∈ 𝑥 → 𝜑)} ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| 13 | 3, 12 | bitr3id 285 | 1 ⊢ (𝑋 ∈ 𝑉 → (𝑋 ∈ 𝑋 ↔ (𝑋 ∈ 𝑋 → 𝜑))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 {cab 2712 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-v 3465 |
| This theorem is referenced by: currysetlem2 36908 currysetlem3 36909 |
| Copyright terms: Public domain | W3C validator |