Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrcplgr | Structured version Visualization version GIF version |
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cusgrcplgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 27688 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 USGraphcusgr 27422 ComplGraphccplgr 27679 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-cusgr 27682 |
This theorem is referenced by: cusgrsizeindslem 27721 cusgrrusgr 27851 cusgredgex 32983 |
Copyright terms: Public domain | W3C validator |