| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrcplgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrcplgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr 29435 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 USGraphcusgr 29166 ComplGraphccplgr 29426 ComplUSGraphccusgr 29427 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3482 df-in 3958 df-cusgr 29429 |
| This theorem is referenced by: cusgrsizeindslem 29469 cusgrrusgr 29599 cusgredgex 35127 |
| Copyright terms: Public domain | W3C validator |