Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrcplgr | Structured version Visualization version GIF version |
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cusgrcplgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 27785 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | 1 | simprbi 497 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2106 USGraphcusgr 27519 ComplGraphccplgr 27776 ComplUSGraphccusgr 27777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-cusgr 27779 |
This theorem is referenced by: cusgrsizeindslem 27818 cusgrrusgr 27948 cusgredgex 33083 |
Copyright terms: Public domain | W3C validator |