![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrcplgr | Structured version Visualization version GIF version |
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cusgrcplgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 29110 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 USGraphcusgr 28844 ComplGraphccplgr 29101 ComplUSGraphccusgr 29102 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-v 3468 df-in 3947 df-cusgr 29104 |
This theorem is referenced by: cusgrsizeindslem 29143 cusgrrusgr 29273 cusgredgex 34567 |
Copyright terms: Public domain | W3C validator |