| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrcplgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrcplgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr 29389 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 2 | 1 | simprbi 496 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2110 USGraphcusgr 29120 ComplGraphccplgr 29380 ComplUSGraphccusgr 29381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3436 df-in 3907 df-cusgr 29383 |
| This theorem is referenced by: cusgrsizeindslem 29423 cusgrrusgr 29553 cusgredgex 35134 |
| Copyright terms: Public domain | W3C validator |