MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrcplgr Structured version   Visualization version   GIF version

Theorem cusgrcplgr 29353
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrcplgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)

Proof of Theorem cusgrcplgr
StepHypRef Expression
1 iscusgr 29351 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simprbi 496 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  USGraphcusgr 29082  ComplGraphccplgr 29342  ComplUSGraphccusgr 29343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-in 3923  df-cusgr 29345
This theorem is referenced by:  cusgrsizeindslem  29385  cusgrrusgr  29515  cusgredgex  35109
  Copyright terms: Public domain W3C validator