MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrcplgr Structured version   Visualization version   GIF version

Theorem cusgrcplgr 27787
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrcplgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)

Proof of Theorem cusgrcplgr
StepHypRef Expression
1 iscusgr 27785 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simprbi 497 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2106  USGraphcusgr 27519  ComplGraphccplgr 27776  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-cusgr 27779
This theorem is referenced by:  cusgrsizeindslem  27818  cusgrrusgr  27948  cusgredgex  33083
  Copyright terms: Public domain W3C validator