MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrcplgr Structured version   Visualization version   GIF version

Theorem cusgrcplgr 29455
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrcplgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)

Proof of Theorem cusgrcplgr
StepHypRef Expression
1 iscusgr 29453 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simprbi 496 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  USGraphcusgr 29184  ComplGraphccplgr 29444  ComplUSGraphccusgr 29445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-cusgr 29447
This theorem is referenced by:  cusgrsizeindslem  29487  cusgrrusgr  29617  cusgredgex  35089
  Copyright terms: Public domain W3C validator