MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrcplgr Structured version   Visualization version   GIF version

Theorem cusgrcplgr 29112
Description: A complete simple graph is a complete graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrcplgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)

Proof of Theorem cusgrcplgr
StepHypRef Expression
1 iscusgr 29110 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simprbi 496 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  USGraphcusgr 28844  ComplGraphccplgr 29101  ComplUSGraphccusgr 29102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-v 3468  df-in 3947  df-cusgr 29104
This theorem is referenced by:  cusgrsizeindslem  29143  cusgrrusgr  29273  cusgredgex  34567
  Copyright terms: Public domain W3C validator