Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgredgex Structured version   Visualization version   GIF version

Theorem cusgredgex 33218
Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.)
Hypotheses
Ref Expression
cusgredgex.1 𝑉 = (Vtx‘𝐺)
cusgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredgex (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))

Proof of Theorem cusgredgex
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 27920 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgredgex.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 cusgredgex.2 . . . . . . . . 9 𝐸 = (Edg‘𝐺)
42, 3cplgredgex 33217 . . . . . . . 8 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
51, 4syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
65imp 407 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
7 df-rex 3071 . . . . . 6 (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
86, 7sylib 217 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
9 eldifsni 4734 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐵𝐴)
109necomd 2996 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐴𝐵)
1110adantl 482 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝐵)
12 hashprg 14188 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
1311, 12mpbid 231 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (♯‘{𝐴, 𝐵}) = 2)
1413adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = 2)
15 cusgrusgr 27919 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
163usgredgppr 27696 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1715, 16sylan 580 . . . . . . . . . . . . 13 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1817adantr 481 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘𝑒) = 2)
1914, 18eqtr4d 2779 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = (♯‘𝑒))
20 simpl 483 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸))
21 vex 3444 . . . . . . . . . . . . . . . 16 𝑒 ∈ V
22 2nn0 12329 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
23 hashvnfin 14153 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ V ∧ 2 ∈ ℕ0) → ((♯‘𝑒) = 2 → 𝑒 ∈ Fin))
2421, 22, 23mp2an 689 . . . . . . . . . . . . . . 15 ((♯‘𝑒) = 2 → 𝑒 ∈ Fin)
2517, 24syl 17 . . . . . . . . . . . . . 14 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → 𝑒 ∈ Fin)
26 fisshasheq 33208 . . . . . . . . . . . . . 14 ((𝑒 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
2725, 26syl3an1 1162 . . . . . . . . . . . . 13 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
28273comr 1124 . . . . . . . . . . . 12 (((♯‘{𝐴, 𝐵}) = (♯‘𝑒) ∧ (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} = 𝑒)
29283exp 1118 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐵}) = (♯‘𝑒) → ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3019, 20, 29sylc 65 . . . . . . . . . 10 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
31303impa 1109 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸 ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
32313com23 1125 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
33323expia 1120 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3433imdistand 571 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ((𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → (𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
3534eximdv 1919 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
368, 35mpd 15 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒))
37 pm3.22 460 . . . . . 6 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ({𝐴, 𝐵} = 𝑒𝑒𝐸))
38 eqcom 2743 . . . . . . 7 ({𝐴, 𝐵} = 𝑒𝑒 = {𝐴, 𝐵})
3938anbi1i 624 . . . . . 6 (({𝐴, 𝐵} = 𝑒𝑒𝐸) ↔ (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4037, 39sylib 217 . . . . 5 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4140eximi 1836 . . . 4 (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4236, 41syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
43 prex 5369 . . . 4 {𝐴, 𝐵} ∈ V
44 eleq1 2824 . . . 4 (𝑒 = {𝐴, 𝐵} → (𝑒𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
4543, 44ceqsexv 3487 . . 3 (∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸) ↔ {𝐴, 𝐵} ∈ 𝐸)
4642, 45sylib 217 . 2 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → {𝐴, 𝐵} ∈ 𝐸)
4746ex 413 1 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wex 1780  wcel 2105  wne 2940  wrex 3070  Vcvv 3440  cdif 3893  wss 3896  {csn 4570  {cpr 4572  cfv 6465  Fincfn 8782  2c2 12107  0cn0 12312  chash 14123  Vtxcvtx 27499  Edgcedg 27550  USGraphcusgr 27652  ComplGraphccplgr 27909  ComplUSGraphccusgr 27910
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5237  ax-nul 5244  ax-pow 5302  ax-pr 5366  ax-un 7629  ax-cnex 11006  ax-resscn 11007  ax-1cn 11008  ax-icn 11009  ax-addcl 11010  ax-addrcl 11011  ax-mulcl 11012  ax-mulrcl 11013  ax-mulcom 11014  ax-addass 11015  ax-mulass 11016  ax-distr 11017  ax-i2m1 11018  ax-1ne0 11019  ax-1rid 11020  ax-rnegex 11021  ax-rrecex 11022  ax-cnre 11023  ax-pre-lttri 11024  ax-pre-lttrn 11025  ax-pre-ltadd 11026  ax-pre-mulgt0 11027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3442  df-sbc 3726  df-csb 3842  df-dif 3899  df-un 3901  df-in 3903  df-ss 3913  df-pss 3915  df-nul 4267  df-if 4471  df-pw 4546  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4850  df-int 4892  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5170  df-tr 5204  df-id 5506  df-eprel 5512  df-po 5520  df-so 5521  df-fr 5562  df-we 5564  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-pred 6224  df-ord 6291  df-on 6292  df-lim 6293  df-suc 6294  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-riota 7273  df-ov 7319  df-oprab 7320  df-mpo 7321  df-om 7759  df-1st 7877  df-2nd 7878  df-frecs 8145  df-wrecs 8176  df-recs 8250  df-rdg 8289  df-1o 8345  df-oadd 8349  df-er 8547  df-en 8783  df-dom 8784  df-sdom 8785  df-fin 8786  df-dju 9736  df-card 9774  df-pnf 11090  df-mnf 11091  df-xr 11092  df-ltxr 11093  df-le 11094  df-sub 11286  df-neg 11287  df-nn 12053  df-2 12115  df-n0 12313  df-z 12399  df-uz 12662  df-fz 13319  df-hash 14124  df-edg 27551  df-usgr 27654  df-nbgr 27833  df-uvtx 27886  df-cplgr 27911  df-cusgr 27912
This theorem is referenced by:  cusgredgex2  33219
  Copyright terms: Public domain W3C validator