Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgredgex Structured version   Visualization version   GIF version

Theorem cusgredgex 34100
Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.)
Hypotheses
Ref Expression
cusgredgex.1 𝑉 = (Vtx‘𝐺)
cusgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredgex (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))

Proof of Theorem cusgredgex
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 28666 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgredgex.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 cusgredgex.2 . . . . . . . . 9 𝐸 = (Edg‘𝐺)
42, 3cplgredgex 34099 . . . . . . . 8 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
51, 4syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
65imp 407 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
7 df-rex 3071 . . . . . 6 (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
86, 7sylib 217 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
9 eldifsni 4792 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐵𝐴)
109necomd 2996 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐴𝐵)
1110adantl 482 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝐵)
12 hashprg 14351 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
1311, 12mpbid 231 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (♯‘{𝐴, 𝐵}) = 2)
1413adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = 2)
15 cusgrusgr 28665 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
163usgredgppr 28442 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1715, 16sylan 580 . . . . . . . . . . . . 13 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1817adantr 481 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘𝑒) = 2)
1914, 18eqtr4d 2775 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = (♯‘𝑒))
20 simpl 483 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸))
21 vex 3478 . . . . . . . . . . . . . . . 16 𝑒 ∈ V
22 2nn0 12485 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
23 hashvnfin 14316 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ V ∧ 2 ∈ ℕ0) → ((♯‘𝑒) = 2 → 𝑒 ∈ Fin))
2421, 22, 23mp2an 690 . . . . . . . . . . . . . . 15 ((♯‘𝑒) = 2 → 𝑒 ∈ Fin)
2517, 24syl 17 . . . . . . . . . . . . . 14 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → 𝑒 ∈ Fin)
26 fisshasheq 34092 . . . . . . . . . . . . . 14 ((𝑒 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
2725, 26syl3an1 1163 . . . . . . . . . . . . 13 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
28273comr 1125 . . . . . . . . . . . 12 (((♯‘{𝐴, 𝐵}) = (♯‘𝑒) ∧ (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} = 𝑒)
29283exp 1119 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐵}) = (♯‘𝑒) → ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3019, 20, 29sylc 65 . . . . . . . . . 10 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
31303impa 1110 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸 ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
32313com23 1126 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
33323expia 1121 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3433imdistand 571 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ((𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → (𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
3534eximdv 1920 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
368, 35mpd 15 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒))
37 pm3.22 460 . . . . . 6 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ({𝐴, 𝐵} = 𝑒𝑒𝐸))
38 eqcom 2739 . . . . . . 7 ({𝐴, 𝐵} = 𝑒𝑒 = {𝐴, 𝐵})
3938anbi1i 624 . . . . . 6 (({𝐴, 𝐵} = 𝑒𝑒𝐸) ↔ (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4037, 39sylib 217 . . . . 5 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4140eximi 1837 . . . 4 (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4236, 41syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
43 prex 5431 . . . 4 {𝐴, 𝐵} ∈ V
44 eleq1 2821 . . . 4 (𝑒 = {𝐴, 𝐵} → (𝑒𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
4543, 44ceqsexv 3525 . . 3 (∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸) ↔ {𝐴, 𝐵} ∈ 𝐸)
4642, 45sylib 217 . 2 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → {𝐴, 𝐵} ∈ 𝐸)
4746ex 413 1 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wex 1781  wcel 2106  wne 2940  wrex 3070  Vcvv 3474  cdif 3944  wss 3947  {csn 4627  {cpr 4629  cfv 6540  Fincfn 8935  2c2 12263  0cn0 12468  chash 14286  Vtxcvtx 28245  Edgcedg 28296  USGraphcusgr 28398  ComplGraphccplgr 28655  ComplUSGraphccusgr 28656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-z 12555  df-uz 12819  df-fz 13481  df-hash 14287  df-edg 28297  df-usgr 28400  df-nbgr 28579  df-uvtx 28632  df-cplgr 28657  df-cusgr 28658
This theorem is referenced by:  cusgredgex2  34101
  Copyright terms: Public domain W3C validator