Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cusgredgex Structured version   Visualization version   GIF version

Theorem cusgredgex 33083
Description: Any two (distinct) vertices in a complete simple graph are connected to each other by an edge. (Contributed by BTernaryTau, 3-Oct-2023.)
Hypotheses
Ref Expression
cusgredgex.1 𝑉 = (Vtx‘𝐺)
cusgredgex.2 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgredgex (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))

Proof of Theorem cusgredgex
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 27787 . . . . . . . 8 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgredgex.1 . . . . . . . . 9 𝑉 = (Vtx‘𝐺)
3 cusgredgex.2 . . . . . . . . 9 𝐸 = (Edg‘𝐺)
42, 3cplgredgex 33082 . . . . . . . 8 (𝐺 ∈ ComplGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
51, 4syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒))
65imp 407 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒)
7 df-rex 3070 . . . . . 6 (∃𝑒𝐸 {𝐴, 𝐵} ⊆ 𝑒 ↔ ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
86, 7sylib 217 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒))
9 eldifsni 4723 . . . . . . . . . . . . . . . 16 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐵𝐴)
109necomd 2999 . . . . . . . . . . . . . . 15 (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐴𝐵)
1110adantl 482 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴𝐵)
12 hashprg 14110 . . . . . . . . . . . . . 14 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (𝐴𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2))
1311, 12mpbid 231 . . . . . . . . . . . . 13 ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → (♯‘{𝐴, 𝐵}) = 2)
1413adantl 482 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = 2)
15 cusgrusgr 27786 . . . . . . . . . . . . . 14 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
163usgredgppr 27563 . . . . . . . . . . . . . 14 ((𝐺 ∈ USGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1715, 16sylan 580 . . . . . . . . . . . . 13 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → (♯‘𝑒) = 2)
1817adantr 481 . . . . . . . . . . . 12 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘𝑒) = 2)
1914, 18eqtr4d 2781 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = (♯‘𝑒))
20 simpl 483 . . . . . . . . . . 11 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸))
21 vex 3436 . . . . . . . . . . . . . . . 16 𝑒 ∈ V
22 2nn0 12250 . . . . . . . . . . . . . . . 16 2 ∈ ℕ0
23 hashvnfin 14075 . . . . . . . . . . . . . . . 16 ((𝑒 ∈ V ∧ 2 ∈ ℕ0) → ((♯‘𝑒) = 2 → 𝑒 ∈ Fin))
2421, 22, 23mp2an 689 . . . . . . . . . . . . . . 15 ((♯‘𝑒) = 2 → 𝑒 ∈ Fin)
2517, 24syl 17 . . . . . . . . . . . . . 14 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → 𝑒 ∈ Fin)
26 fisshasheq 33073 . . . . . . . . . . . . . 14 ((𝑒 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
2725, 26syl3an1 1162 . . . . . . . . . . . . 13 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒)
28273comr 1124 . . . . . . . . . . . 12 (((♯‘{𝐴, 𝐵}) = (♯‘𝑒) ∧ (𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} = 𝑒)
29283exp 1118 . . . . . . . . . . 11 ((♯‘{𝐴, 𝐵}) = (♯‘𝑒) → ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3019, 20, 29sylc 65 . . . . . . . . . 10 (((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸) ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
31303impa 1109 . . . . . . . . 9 ((𝐺 ∈ ComplUSGraph ∧ 𝑒𝐸 ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
32313com23 1125 . . . . . . . 8 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) ∧ 𝑒𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))
33323expia 1120 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝑒𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)))
3433imdistand 571 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ((𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → (𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
3534eximdv 1920 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒)))
368, 35mpd 15 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒))
37 pm3.22 460 . . . . . 6 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ({𝐴, 𝐵} = 𝑒𝑒𝐸))
38 eqcom 2745 . . . . . . 7 ({𝐴, 𝐵} = 𝑒𝑒 = {𝐴, 𝐵})
3938anbi1i 624 . . . . . 6 (({𝐴, 𝐵} = 𝑒𝑒𝐸) ↔ (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4037, 39sylib 217 . . . . 5 ((𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → (𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4140eximi 1837 . . . 4 (∃𝑒(𝑒𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
4236, 41syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸))
43 prex 5355 . . . 4 {𝐴, 𝐵} ∈ V
44 eleq1 2826 . . . 4 (𝑒 = {𝐴, 𝐵} → (𝑒𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸))
4543, 44ceqsexv 3479 . . 3 (∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒𝐸) ↔ {𝐴, 𝐵} ∈ 𝐸)
4642, 45sylib 217 . 2 ((𝐺 ∈ ComplUSGraph ∧ (𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴}))) → {𝐴, 𝐵} ∈ 𝐸)
4746ex 413 1 (𝐺 ∈ ComplUSGraph → ((𝐴𝑉𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wex 1782  wcel 2106  wne 2943  wrex 3065  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  Fincfn 8733  2c2 12028  0cn0 12233  chash 14044  Vtxcvtx 27366  Edgcedg 27417  USGraphcusgr 27519  ComplGraphccplgr 27776  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-usgr 27521  df-nbgr 27700  df-uvtx 27753  df-cplgr 27778  df-cusgr 27779
This theorem is referenced by:  cusgredgex2  33084
  Copyright terms: Public domain W3C validator