Step | Hyp | Ref
| Expression |
1 | | cusgrcplgr 27690 |
. . . . . . . 8
⊢ (𝐺 ∈ ComplUSGraph →
𝐺 ∈
ComplGraph) |
2 | | cusgredgex.1 |
. . . . . . . . 9
⊢ 𝑉 = (Vtx‘𝐺) |
3 | | cusgredgex.2 |
. . . . . . . . 9
⊢ 𝐸 = (Edg‘𝐺) |
4 | 2, 3 | cplgredgex 32982 |
. . . . . . . 8
⊢ (𝐺 ∈ ComplGraph →
((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) |
5 | 1, 4 | syl 17 |
. . . . . . 7
⊢ (𝐺 ∈ ComplUSGraph →
((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒)) |
6 | 5 | imp 406 |
. . . . . 6
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒 ∈ 𝐸 {𝐴, 𝐵} ⊆ 𝑒) |
7 | | df-rex 3069 |
. . . . . 6
⊢
(∃𝑒 ∈
𝐸 {𝐴, 𝐵} ⊆ 𝑒 ↔ ∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒)) |
8 | 6, 7 | sylib 217 |
. . . . 5
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒)) |
9 | | eldifsni 4720 |
. . . . . . . . . . . . . . . 16
⊢ (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐵 ≠ 𝐴) |
10 | 9 | necomd 2998 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ (𝑉 ∖ {𝐴}) → 𝐴 ≠ 𝐵) |
11 | 10 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → 𝐴 ≠ 𝐵) |
12 | | hashprg 14038 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
13 | 11, 12 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → (♯‘{𝐴, 𝐵}) = 2) |
14 | 13 | adantl 481 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = 2) |
15 | | cusgrusgr 27689 |
. . . . . . . . . . . . . 14
⊢ (𝐺 ∈ ComplUSGraph →
𝐺 ∈
USGraph) |
16 | 3 | usgredgppr 27466 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ USGraph ∧ 𝑒 ∈ 𝐸) → (♯‘𝑒) = 2) |
17 | 15, 16 | sylan 579 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) → (♯‘𝑒) = 2) |
18 | 17 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘𝑒) = 2) |
19 | 14, 18 | eqtr4d 2781 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) |
20 | | simpl 482 |
. . . . . . . . . . 11
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸)) |
21 | | vex 3426 |
. . . . . . . . . . . . . . . 16
⊢ 𝑒 ∈ V |
22 | | 2nn0 12180 |
. . . . . . . . . . . . . . . 16
⊢ 2 ∈
ℕ0 |
23 | | hashvnfin 14003 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑒 ∈ V ∧ 2 ∈
ℕ0) → ((♯‘𝑒) = 2 → 𝑒 ∈ Fin)) |
24 | 21, 22, 23 | mp2an 688 |
. . . . . . . . . . . . . . 15
⊢
((♯‘𝑒) =
2 → 𝑒 ∈
Fin) |
25 | 17, 24 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) → 𝑒 ∈ Fin) |
26 | | fisshasheq 32973 |
. . . . . . . . . . . . . 14
⊢ ((𝑒 ∈ Fin ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒) |
27 | 25, 26 | syl3an1 1161 |
. . . . . . . . . . . . 13
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒 ∧ (♯‘{𝐴, 𝐵}) = (♯‘𝑒)) → {𝐴, 𝐵} = 𝑒) |
28 | 27 | 3comr 1123 |
. . . . . . . . . . . 12
⊢
(((♯‘{𝐴,
𝐵}) = (♯‘𝑒) ∧ (𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ {𝐴, 𝐵} ⊆ 𝑒) → {𝐴, 𝐵} = 𝑒) |
29 | 28 | 3exp 1117 |
. . . . . . . . . . 11
⊢
((♯‘{𝐴,
𝐵}) = (♯‘𝑒) → ((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))) |
30 | 19, 20, 29 | sylc 65 |
. . . . . . . . . 10
⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸) ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)) |
31 | 30 | 3impa 1108 |
. . . . . . . . 9
⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑒 ∈ 𝐸 ∧ (𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)) |
32 | 31 | 3com23 1124 |
. . . . . . . 8
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) ∧ 𝑒 ∈ 𝐸) → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒)) |
33 | 32 | 3expia 1119 |
. . . . . . 7
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (𝑒 ∈ 𝐸 → ({𝐴, 𝐵} ⊆ 𝑒 → {𝐴, 𝐵} = 𝑒))) |
34 | 33 | imdistand 570 |
. . . . . 6
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ((𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → (𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒))) |
35 | 34 | eximdv 1921 |
. . . . 5
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → (∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} ⊆ 𝑒) → ∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒))) |
36 | 8, 35 | mpd 15 |
. . . 4
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒)) |
37 | | pm3.22 459 |
. . . . . 6
⊢ ((𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ({𝐴, 𝐵} = 𝑒 ∧ 𝑒 ∈ 𝐸)) |
38 | | eqcom 2745 |
. . . . . . 7
⊢ ({𝐴, 𝐵} = 𝑒 ↔ 𝑒 = {𝐴, 𝐵}) |
39 | 38 | anbi1i 623 |
. . . . . 6
⊢ (({𝐴, 𝐵} = 𝑒 ∧ 𝑒 ∈ 𝐸) ↔ (𝑒 = {𝐴, 𝐵} ∧ 𝑒 ∈ 𝐸)) |
40 | 37, 39 | sylib 217 |
. . . . 5
⊢ ((𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒) → (𝑒 = {𝐴, 𝐵} ∧ 𝑒 ∈ 𝐸)) |
41 | 40 | eximi 1838 |
. . . 4
⊢
(∃𝑒(𝑒 ∈ 𝐸 ∧ {𝐴, 𝐵} = 𝑒) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒 ∈ 𝐸)) |
42 | 36, 41 | syl 17 |
. . 3
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → ∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒 ∈ 𝐸)) |
43 | | prex 5350 |
. . . 4
⊢ {𝐴, 𝐵} ∈ V |
44 | | eleq1 2826 |
. . . 4
⊢ (𝑒 = {𝐴, 𝐵} → (𝑒 ∈ 𝐸 ↔ {𝐴, 𝐵} ∈ 𝐸)) |
45 | 43, 44 | ceqsexv 3469 |
. . 3
⊢
(∃𝑒(𝑒 = {𝐴, 𝐵} ∧ 𝑒 ∈ 𝐸) ↔ {𝐴, 𝐵} ∈ 𝐸) |
46 | 42, 45 | sylib 217 |
. 2
⊢ ((𝐺 ∈ ComplUSGraph ∧
(𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴}))) → {𝐴, 𝐵} ∈ 𝐸) |
47 | 46 | ex 412 |
1
⊢ (𝐺 ∈ ComplUSGraph →
((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ (𝑉 ∖ {𝐴})) → {𝐴, 𝐵} ∈ 𝐸)) |