MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrusgr Structured version   Visualization version   GIF version

Theorem cusgrusgr 29404
Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrusgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem cusgrusgr
StepHypRef Expression
1 iscusgr 29403 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simplbi 497 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  USGraphcusgr 29134  ComplGraphccplgr 29394  ComplUSGraphccusgr 29395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-in 3904  df-cusgr 29397
This theorem is referenced by:  cusgrres  29434  cusgrsizeindslem  29437  cusgrsizeinds  29438  cusgrsize  29440  cusgrrusgr  29567  cusgredgex  35173  cusgr3cyclex  35187  cusgracyclt3v  35207
  Copyright terms: Public domain W3C validator