Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrusgr | Structured version Visualization version GIF version |
Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cusgrusgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 27766 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2109 USGraphcusgr 27500 ComplGraphccplgr 27757 ComplUSGraphccusgr 27758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-cusgr 27760 |
This theorem is referenced by: cusgrres 27796 cusgrsizeindslem 27799 cusgrsizeinds 27800 cusgrsize 27802 cusgrrusgr 27929 cusgredgex 33062 cusgr3cyclex 33077 cusgracyclt3v 33097 |
Copyright terms: Public domain | W3C validator |