MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrusgr Structured version   Visualization version   GIF version

Theorem cusgrusgr 29462
Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.)
Assertion
Ref Expression
cusgrusgr (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)

Proof of Theorem cusgrusgr
StepHypRef Expression
1 iscusgr 29461 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
21simplbi 497 1 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2108  USGraphcusgr 29192  ComplGraphccplgr 29452  ComplUSGraphccusgr 29453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1542  df-ex 1779  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-v 3483  df-in 3973  df-cusgr 29455
This theorem is referenced by:  cusgrres  29492  cusgrsizeindslem  29495  cusgrsizeinds  29496  cusgrsize  29498  cusgrrusgr  29625  cusgredgex  35120  cusgr3cyclex  35134  cusgracyclt3v  35154
  Copyright terms: Public domain W3C validator