| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrusgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrusgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr 29363 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 USGraphcusgr 29094 ComplGraphccplgr 29354 ComplUSGraphccusgr 29355 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-in 3938 df-cusgr 29357 |
| This theorem is referenced by: cusgrres 29394 cusgrsizeindslem 29397 cusgrsizeinds 29398 cusgrsize 29400 cusgrrusgr 29527 cusgredgex 35086 cusgr3cyclex 35100 cusgracyclt3v 35120 |
| Copyright terms: Public domain | W3C validator |