![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrusgr | Structured version Visualization version GIF version |
Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
cusgrusgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 29461 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 USGraphcusgr 29192 ComplGraphccplgr 29452 ComplUSGraphccusgr 29453 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-v 3483 df-in 3973 df-cusgr 29455 |
This theorem is referenced by: cusgrres 29492 cusgrsizeindslem 29495 cusgrsizeinds 29496 cusgrsize 29498 cusgrrusgr 29625 cusgredgex 35120 cusgr3cyclex 35134 cusgracyclt3v 35154 |
Copyright terms: Public domain | W3C validator |