| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrusgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph is a simple graph. (Contributed by Alexander van der Vekens, 13-Oct-2017.) (Revised by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrusgr | ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscusgr 29351 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
| 2 | 1 | simplbi 497 | 1 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 USGraphcusgr 29082 ComplGraphccplgr 29342 ComplUSGraphccusgr 29343 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3923 df-cusgr 29345 |
| This theorem is referenced by: cusgrres 29382 cusgrsizeindslem 29385 cusgrsizeinds 29386 cusgrsize 29388 cusgrrusgr 29515 cusgredgex 35109 cusgr3cyclex 35123 cusgracyclt3v 35143 |
| Copyright terms: Public domain | W3C validator |