MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeindslem Structured version   Visualization version   GIF version

Theorem cusgrsizeindslem 29321
Description: Lemma for cusgrsizeinds 29322. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsizeindslem ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉

Proof of Theorem cusgrsizeindslem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 29289 . . . . 5 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgrsizeindb0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbcplgr 29303 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
41, 3sylan 578 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
543adant2 1128 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
65fveq2d 6898 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁})))
7 cusgrusgr 29288 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
87anim1i 613 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
983adant2 1128 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
10 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
112, 10nbusgrf1o 29240 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
129, 11syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
132, 10nbusgr 29218 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
147, 13syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
1514adantr 479 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
16 rabfi 9292 . . . . . . 7 (𝑉 ∈ Fin → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1716adantl 480 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1815, 17eqeltrd 2825 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
19183adant3 1129 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
207anim1i 613 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
212isfusgr 29187 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2220, 21sylibr 233 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
23 fusgrfis 29199 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2410, 23eqeltrid 2829 . . . . . . 7 (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin)
25 rabfi 9292 . . . . . . 7 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2624, 25syl 17 . . . . . 6 (𝐺 ∈ FinUSGraph → {𝑒𝐸𝑁𝑒} ∈ Fin)
2722, 26syl 17 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
28273adant3 1129 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
29 hasheqf1o 14340 . . . 4 (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒𝐸𝑁𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3019, 28, 29syl2anc 582 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3112, 30mpbird 256 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}))
32 hashdifsn 14405 . . 3 ((𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
33323adant1 1127 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
346, 31, 333eqtr3d 2773 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wex 1773  wcel 2098  {crab 3419  cdif 3942  {csn 4629  {cpr 4631  1-1-ontowf1o 6546  cfv 6547  (class class class)co 7417  Fincfn 8962  1c1 11139  cmin 11474  chash 14321  Vtxcvtx 28865  Edgcedg 28916  USGraphcusgr 29018  FinUSGraphcfusgr 29185   NeighbVtx cnbgr 29201  ComplGraphccplgr 29278  ComplUSGraphccusgr 29279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-n0 12503  df-xnn0 12575  df-z 12589  df-uz 12853  df-fz 13517  df-hash 14322  df-vtx 28867  df-iedg 28868  df-edg 28917  df-uhgr 28927  df-upgr 28951  df-umgr 28952  df-uspgr 29019  df-usgr 29020  df-fusgr 29186  df-nbgr 29202  df-uvtx 29255  df-cplgr 29280  df-cusgr 29281
This theorem is referenced by:  cusgrsizeinds  29322
  Copyright terms: Public domain W3C validator