| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrsizeindslem | Structured version Visualization version GIF version | ||
| Description: Lemma for cusgrsizeinds 29424. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrsizeindslem | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrcplgr 29391 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
| 2 | cusgrsizeindb0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | nbcplgr 29405 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 5 | 4 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 6 | 5 | fveq2d 6821 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁}))) |
| 7 | cusgrusgr 29390 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 8 | 7 | anim1i 615 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
| 10 | cusgrsizeindb0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 11 | 2, 10 | nbusgrf1o 29342 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
| 13 | 2, 10 | nbusgr 29320 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 14 | 7, 13 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 16 | rabfi 9150 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) |
| 18 | 15, 17 | eqeltrd 2829 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
| 20 | 7 | anim1i 615 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 21 | 2 | isfusgr 29289 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 22 | 20, 21 | sylibr 234 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| 23 | fusgrfis 29301 | . . . . . . . 8 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
| 24 | 10, 23 | eqeltrid 2833 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin) |
| 25 | rabfi 9150 | . . . . . . 7 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 27 | 22, 26 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 28 | 27 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 29 | hasheqf1o 14248 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) | |
| 30 | 19, 28, 29 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
| 31 | 12, 30 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
| 32 | hashdifsn 14313 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) | |
| 33 | 32 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) |
| 34 | 6, 31, 33 | 3eqtr3d 2773 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∃wex 1780 ∈ wcel 2110 {crab 3393 ∖ cdif 3897 {csn 4574 {cpr 4576 –1-1-onto→wf1o 6476 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 1c1 10999 − cmin 11336 ♯chash 14229 Vtxcvtx 28967 Edgcedg 29018 USGraphcusgr 29120 FinUSGraphcfusgr 29287 NeighbVtx cnbgr 29303 ComplGraphccplgr 29380 ComplUSGraphccusgr 29381 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-hash 14230 df-vtx 28969 df-iedg 28970 df-edg 29019 df-uhgr 29029 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-fusgr 29288 df-nbgr 29304 df-uvtx 29357 df-cplgr 29382 df-cusgr 29383 |
| This theorem is referenced by: cusgrsizeinds 29424 |
| Copyright terms: Public domain | W3C validator |