| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrsizeindslem | Structured version Visualization version GIF version | ||
| Description: Lemma for cusgrsizeinds 29416. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
| Ref | Expression |
|---|---|
| cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrsizeindslem | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrcplgr 29383 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
| 2 | cusgrsizeindb0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 3 | 2 | nbcplgr 29397 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 4 | 1, 3 | sylan 580 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 5 | 4 | 3adant2 1131 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
| 6 | 5 | fveq2d 6830 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁}))) |
| 7 | cusgrusgr 29382 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 8 | 7 | anim1i 615 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
| 9 | 8 | 3adant2 1131 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
| 10 | cusgrsizeindb0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 11 | 2, 10 | nbusgrf1o 29334 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
| 12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
| 13 | 2, 10 | nbusgr 29312 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 14 | 7, 13 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
| 16 | rabfi 9172 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) | |
| 17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) |
| 18 | 15, 17 | eqeltrd 2828 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
| 19 | 18 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
| 20 | 7 | anim1i 615 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 21 | 2 | isfusgr 29281 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
| 22 | 20, 21 | sylibr 234 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
| 23 | fusgrfis 29293 | . . . . . . . 8 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
| 24 | 10, 23 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin) |
| 25 | rabfi 9172 | . . . . . . 7 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
| 26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 27 | 22, 26 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 28 | 27 | 3adant3 1132 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
| 29 | hasheqf1o 14274 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) | |
| 30 | 19, 28, 29 | syl2anc 584 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
| 31 | 12, 30 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
| 32 | hashdifsn 14339 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) | |
| 33 | 32 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) |
| 34 | 6, 31, 33 | 3eqtr3d 2772 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {crab 3396 ∖ cdif 3902 {csn 4579 {cpr 4581 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 1c1 11029 − cmin 11365 ♯chash 14255 Vtxcvtx 28959 Edgcedg 29010 USGraphcusgr 29112 FinUSGraphcfusgr 29279 NeighbVtx cnbgr 29295 ComplGraphccplgr 29372 ComplUSGraphccusgr 29373 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-fz 13429 df-hash 14256 df-vtx 28961 df-iedg 28962 df-edg 29011 df-uhgr 29021 df-upgr 29045 df-umgr 29046 df-uspgr 29113 df-usgr 29114 df-fusgr 29280 df-nbgr 29296 df-uvtx 29349 df-cplgr 29374 df-cusgr 29375 |
| This theorem is referenced by: cusgrsizeinds 29416 |
| Copyright terms: Public domain | W3C validator |