MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeindslem Structured version   Visualization version   GIF version

Theorem cusgrsizeindslem 29436
Description: Lemma for cusgrsizeinds 29437. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsizeindslem ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉

Proof of Theorem cusgrsizeindslem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 29404 . . . . 5 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgrsizeindb0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbcplgr 29418 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
41, 3sylan 580 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
543adant2 1131 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
65fveq2d 6885 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁})))
7 cusgrusgr 29403 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
87anim1i 615 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
983adant2 1131 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
10 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
112, 10nbusgrf1o 29355 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
129, 11syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
132, 10nbusgr 29333 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
147, 13syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
1514adantr 480 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
16 rabfi 9280 . . . . . . 7 (𝑉 ∈ Fin → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1716adantl 481 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1815, 17eqeltrd 2835 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
19183adant3 1132 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
207anim1i 615 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
212isfusgr 29302 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2220, 21sylibr 234 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
23 fusgrfis 29314 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2410, 23eqeltrid 2839 . . . . . . 7 (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin)
25 rabfi 9280 . . . . . . 7 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2624, 25syl 17 . . . . . 6 (𝐺 ∈ FinUSGraph → {𝑒𝐸𝑁𝑒} ∈ Fin)
2722, 26syl 17 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
28273adant3 1132 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
29 hasheqf1o 14372 . . . 4 (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒𝐸𝑁𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3019, 28, 29syl2anc 584 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3112, 30mpbird 257 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}))
32 hashdifsn 14437 . . 3 ((𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
33323adant1 1130 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
346, 31, 333eqtr3d 2779 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  {crab 3420  cdif 3928  {csn 4606  {cpr 4608  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  Fincfn 8964  1c1 11135  cmin 11471  chash 14353  Vtxcvtx 28980  Edgcedg 29031  USGraphcusgr 29133  FinUSGraphcfusgr 29300   NeighbVtx cnbgr 29316  ComplGraphccplgr 29393  ComplUSGraphccusgr 29394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-oadd 8489  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-xnn0 12580  df-z 12594  df-uz 12858  df-fz 13530  df-hash 14354  df-vtx 28982  df-iedg 28983  df-edg 29032  df-uhgr 29042  df-upgr 29066  df-umgr 29067  df-uspgr 29134  df-usgr 29135  df-fusgr 29301  df-nbgr 29317  df-uvtx 29370  df-cplgr 29395  df-cusgr 29396
This theorem is referenced by:  cusgrsizeinds  29437
  Copyright terms: Public domain W3C validator