![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cusgrsizeindslem | Structured version Visualization version GIF version |
Description: Lemma for cusgrsizeinds 29253. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cusgrsizeindslem | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrcplgr 29220 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
2 | cusgrsizeindb0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | nbcplgr 29234 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
4 | 1, 3 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
5 | 4 | 3adant2 1129 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
6 | 5 | fveq2d 6895 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁}))) |
7 | cusgrusgr 29219 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
8 | 7 | anim1i 614 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
9 | 8 | 3adant2 1129 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
10 | cusgrsizeindb0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
11 | 2, 10 | nbusgrf1o 29171 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
13 | 2, 10 | nbusgr 29149 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
14 | 7, 13 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
16 | rabfi 9285 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) | |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) |
18 | 15, 17 | eqeltrd 2828 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
19 | 18 | 3adant3 1130 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
20 | 7 | anim1i 614 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
21 | 2 | isfusgr 29118 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
22 | 20, 21 | sylibr 233 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
23 | fusgrfis 29130 | . . . . . . . 8 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
24 | 10, 23 | eqeltrid 2832 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin) |
25 | rabfi 9285 | . . . . . . 7 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
27 | 22, 26 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
28 | 27 | 3adant3 1130 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
29 | hasheqf1o 14332 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) | |
30 | 19, 28, 29 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
31 | 12, 30 | mpbird 257 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
32 | hashdifsn 14397 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) | |
33 | 32 | 3adant1 1128 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) |
34 | 6, 31, 33 | 3eqtr3d 2775 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∃wex 1774 ∈ wcel 2099 {crab 3427 ∖ cdif 3941 {csn 4624 {cpr 4626 –1-1-onto→wf1o 6541 ‘cfv 6542 (class class class)co 7414 Fincfn 8955 1c1 11131 − cmin 11466 ♯chash 14313 Vtxcvtx 28796 Edgcedg 28847 USGraphcusgr 28949 FinUSGraphcfusgr 29116 NeighbVtx cnbgr 29132 ComplGraphccplgr 29209 ComplUSGraphccusgr 29210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 ax-cnex 11186 ax-resscn 11187 ax-1cn 11188 ax-icn 11189 ax-addcl 11190 ax-addrcl 11191 ax-mulcl 11192 ax-mulrcl 11193 ax-mulcom 11194 ax-addass 11195 ax-mulass 11196 ax-distr 11197 ax-i2m1 11198 ax-1ne0 11199 ax-1rid 11200 ax-rnegex 11201 ax-rrecex 11202 ax-cnre 11203 ax-pre-lttri 11204 ax-pre-lttrn 11205 ax-pre-ltadd 11206 ax-pre-mulgt0 11207 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-nel 3042 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-int 4945 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7865 df-1st 7987 df-2nd 7988 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-oadd 8484 df-er 8718 df-en 8956 df-dom 8957 df-sdom 8958 df-fin 8959 df-dju 9916 df-card 9954 df-pnf 11272 df-mnf 11273 df-xr 11274 df-ltxr 11275 df-le 11276 df-sub 11468 df-neg 11469 df-nn 12235 df-2 12297 df-n0 12495 df-xnn0 12567 df-z 12581 df-uz 12845 df-fz 13509 df-hash 14314 df-vtx 28798 df-iedg 28799 df-edg 28848 df-uhgr 28858 df-upgr 28882 df-umgr 28883 df-uspgr 28950 df-usgr 28951 df-fusgr 29117 df-nbgr 29133 df-uvtx 29186 df-cplgr 29211 df-cusgr 29212 |
This theorem is referenced by: cusgrsizeinds 29253 |
Copyright terms: Public domain | W3C validator |