MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrsizeindslem Structured version   Visualization version   GIF version

Theorem cusgrsizeindslem 27233
Description: Lemma for cusgrsizeinds 27234. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.)
Hypotheses
Ref Expression
cusgrsizeindb0.v 𝑉 = (Vtx‘𝐺)
cusgrsizeindb0.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
cusgrsizeindslem ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Distinct variable groups:   𝑒,𝐸   𝑒,𝐺   𝑒,𝑁   𝑒,𝑉

Proof of Theorem cusgrsizeindslem
Dummy variables 𝑓 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cusgrcplgr 27202 . . . . 5 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
2 cusgrsizeindb0.v . . . . . 6 𝑉 = (Vtx‘𝐺)
32nbcplgr 27216 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
41, 3sylan 582 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
543adant2 1127 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁}))
65fveq2d 6674 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁})))
7 cusgrusgr 27201 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
87anim1i 616 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
983adant2 1127 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 ∈ USGraph ∧ 𝑁𝑉))
10 cusgrsizeindb0.e . . . . 5 𝐸 = (Edg‘𝐺)
112, 10nbusgrf1o 27153 . . . 4 ((𝐺 ∈ USGraph ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
129, 11syl 17 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒})
132, 10nbusgr 27131 . . . . . . . 8 (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
147, 13syl 17 . . . . . . 7 (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
1514adantr 483 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
16 rabfi 8743 . . . . . . 7 (𝑉 ∈ Fin → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1716adantl 484 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin)
1815, 17eqeltrd 2913 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
19183adant3 1128 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin)
207anim1i 616 . . . . . . 7 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
212isfusgr 27100 . . . . . . 7 (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin))
2220, 21sylibr 236 . . . . . 6 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph)
23 fusgrfis 27112 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin)
2410, 23eqeltrid 2917 . . . . . . 7 (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin)
25 rabfi 8743 . . . . . . 7 (𝐸 ∈ Fin → {𝑒𝐸𝑁𝑒} ∈ Fin)
2624, 25syl 17 . . . . . 6 (𝐺 ∈ FinUSGraph → {𝑒𝐸𝑁𝑒} ∈ Fin)
2722, 26syl 17 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒𝐸𝑁𝑒} ∈ Fin)
28273adant3 1128 . . . 4 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → {𝑒𝐸𝑁𝑒} ∈ Fin)
29 hasheqf1o 13710 . . . 4 (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒𝐸𝑁𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3019, 28, 29syl2anc 586 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒𝐸𝑁𝑒}))
3112, 30mpbird 259 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒𝐸𝑁𝑒}))
32 hashdifsn 13776 . . 3 ((𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
33323adant1 1126 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1))
346, 31, 333eqtr3d 2864 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁𝑉) → (♯‘{𝑒𝐸𝑁𝑒}) = ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {crab 3142  cdif 3933  {csn 4567  {cpr 4569  1-1-ontowf1o 6354  cfv 6355  (class class class)co 7156  Fincfn 8509  1c1 10538  cmin 10870  chash 13691  Vtxcvtx 26781  Edgcedg 26832  USGraphcusgr 26934  FinUSGraphcfusgr 27098   NeighbVtx cnbgr 27114  ComplGraphccplgr 27191  ComplUSGraphccusgr 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-1st 7689  df-2nd 7690  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-dju 9330  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-nn 11639  df-2 11701  df-n0 11899  df-xnn0 11969  df-z 11983  df-uz 12245  df-fz 12894  df-hash 13692  df-vtx 26783  df-iedg 26784  df-edg 26833  df-uhgr 26843  df-upgr 26867  df-umgr 26868  df-uspgr 26935  df-usgr 26936  df-fusgr 27099  df-nbgr 27115  df-uvtx 27168  df-cplgr 27193  df-cusgr 27194
This theorem is referenced by:  cusgrsizeinds  27234
  Copyright terms: Public domain W3C validator