Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrsizeindslem | Structured version Visualization version GIF version |
Description: Lemma for cusgrsizeinds 27722. (Contributed by Alexander van der Vekens, 11-Jan-2018.) (Revised by AV, 9-Nov-2020.) |
Ref | Expression |
---|---|
cusgrsizeindb0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
cusgrsizeindb0.e | ⊢ 𝐸 = (Edg‘𝐺) |
Ref | Expression |
---|---|
cusgrsizeindslem | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrcplgr 27690 | . . . . 5 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
2 | cusgrsizeindb0.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | nbcplgr 27704 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
4 | 1, 3 | sylan 579 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
5 | 4 | 3adant2 1129 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) = (𝑉 ∖ {𝑁})) |
6 | 5 | fveq2d 6760 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘(𝑉 ∖ {𝑁}))) |
7 | cusgrusgr 27689 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
8 | 7 | anim1i 614 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
9 | 8 | 3adant2 1129 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉)) |
10 | cusgrsizeindb0.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
11 | 2, 10 | nbusgrf1o 27641 | . . . 4 ⊢ ((𝐺 ∈ USGraph ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
12 | 9, 11 | syl 17 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) |
13 | 2, 10 | nbusgr 27619 | . . . . . . . 8 ⊢ (𝐺 ∈ USGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
14 | 7, 13 | syl 17 | . . . . . . 7 ⊢ (𝐺 ∈ ComplUSGraph → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
15 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}) |
16 | rabfi 8973 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) | |
17 | 16 | adantl 481 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑛 ∈ 𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ∈ Fin) |
18 | 15, 17 | eqeltrd 2839 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
19 | 18 | 3adant3 1130 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (𝐺 NeighbVtx 𝑁) ∈ Fin) |
20 | 7 | anim1i 614 | . . . . . . 7 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
21 | 2 | isfusgr 27588 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝑉 ∈ Fin)) |
22 | 20, 21 | sylibr 233 | . . . . . 6 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → 𝐺 ∈ FinUSGraph) |
23 | fusgrfis 27600 | . . . . . . . 8 ⊢ (𝐺 ∈ FinUSGraph → (Edg‘𝐺) ∈ Fin) | |
24 | 10, 23 | eqeltrid 2843 | . . . . . . 7 ⊢ (𝐺 ∈ FinUSGraph → 𝐸 ∈ Fin) |
25 | rabfi 8973 | . . . . . . 7 ⊢ (𝐸 ∈ Fin → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) | |
26 | 24, 25 | syl 17 | . . . . . 6 ⊢ (𝐺 ∈ FinUSGraph → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
27 | 22, 26 | syl 17 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
28 | 27 | 3adant3 1130 | . . . 4 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) |
29 | hasheqf1o 13991 | . . . 4 ⊢ (((𝐺 NeighbVtx 𝑁) ∈ Fin ∧ {𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒} ∈ Fin) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) | |
30 | 19, 28, 29 | syl2anc 583 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → ((♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) ↔ ∃𝑓 𝑓:(𝐺 NeighbVtx 𝑁)–1-1-onto→{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
31 | 12, 30 | mpbird 256 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑁)) = (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒})) |
32 | hashdifsn 14057 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) | |
33 | 32 | 3adant1 1128 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑁})) = ((♯‘𝑉) − 1)) |
34 | 6, 31, 33 | 3eqtr3d 2786 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑁 ∈ 𝑉) → (♯‘{𝑒 ∈ 𝐸 ∣ 𝑁 ∈ 𝑒}) = ((♯‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {crab 3067 ∖ cdif 3880 {csn 4558 {cpr 4560 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 1c1 10803 − cmin 11135 ♯chash 13972 Vtxcvtx 27269 Edgcedg 27320 USGraphcusgr 27422 FinUSGraphcfusgr 27586 NeighbVtx cnbgr 27602 ComplGraphccplgr 27679 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-dju 9590 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-xnn0 12236 df-z 12250 df-uz 12512 df-fz 13169 df-hash 13973 df-vtx 27271 df-iedg 27272 df-edg 27321 df-uhgr 27331 df-upgr 27355 df-umgr 27356 df-uspgr 27423 df-usgr 27424 df-fusgr 27587 df-nbgr 27603 df-uvtx 27656 df-cplgr 27681 df-cusgr 27682 |
This theorem is referenced by: cusgrsizeinds 27722 |
Copyright terms: Public domain | W3C validator |