| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrrusgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrrusgr | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrusgr 29390 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph) |
| 3 | hashnncl 14265 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅)) | |
| 4 | nnm1nn0 12414 | . . . . . 6 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0) | |
| 5 | 4 | nn0xnn0d 12455 | . . . . 5 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 6 | 3, 5 | biimtrrdi 254 | . . . 4 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*)) |
| 7 | 6 | imp 406 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 8 | 7 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 9 | cusgrcplgr 29391 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
| 10 | 9 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph) |
| 11 | cusgrrusgr.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | 11 | nbcplgr 29405 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 13 | 10, 12 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 14 | 13 | ralrimiva 3122 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 15 | 2 | anim1i 615 | . . . . . . . 8 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
| 17 | 11 | hashnbusgrvd 29500 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 19 | fveq2 6817 | . . . . . . 7 ⊢ ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣}))) | |
| 20 | hashdifsn 14313 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) | |
| 21 | 20 | 3ad2antl2 1187 | . . . . . . 7 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) |
| 22 | 19, 21 | sylan9eqr 2787 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1)) |
| 23 | 18, 22 | eqtr3d 2767 | . . . . 5 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 24 | 23 | ex 412 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 25 | 24 | ralimdva 3142 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 26 | 14, 25 | mpd 15 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 27 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph) | |
| 28 | ovex 7374 | . . 3 ⊢ ((♯‘𝑉) − 1) ∈ V | |
| 29 | eqid 2730 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 30 | 11, 29 | isrusgr0 29538 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
| 31 | 27, 28, 30 | sylancl 586 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
| 32 | 2, 8, 26, 31 | mpbir3and 1343 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 ∀wral 3045 Vcvv 3434 ∖ cdif 3897 ∅c0 4281 {csn 4574 class class class wbr 5089 ‘cfv 6477 (class class class)co 7341 Fincfn 8864 1c1 10999 − cmin 11336 ℕcn 12117 ℕ0*cxnn0 12446 ♯chash 14229 Vtxcvtx 28967 USGraphcusgr 29120 NeighbVtx cnbgr 29303 ComplGraphccplgr 29380 ComplUSGraphccusgr 29381 VtxDegcvtxdg 29437 RegUSGraph crusgr 29528 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3344 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-xadd 13004 df-fz 13400 df-hash 14230 df-edg 29019 df-uhgr 29029 df-ushgr 29030 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-nbgr 29304 df-uvtx 29357 df-cplgr 29382 df-cusgr 29383 df-vtxdg 29438 df-rgr 29529 df-rusgr 29530 |
| This theorem is referenced by: cusgrm1rusgr 29554 |
| Copyright terms: Public domain | W3C validator |