MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrrusgr Structured version   Visualization version   GIF version

Theorem cusgrrusgr 29567
Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgrrusgr ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))

Proof of Theorem cusgrrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 29404 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
213ad2ant1 1133 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph)
3 hashnncl 14279 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
4 nnm1nn0 12428 . . . . . 6 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
54nn0xnn0d 12469 . . . . 5 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*)
63, 5biimtrrdi 254 . . . 4 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*))
76imp 406 . . 3 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
873adant1 1130 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
9 cusgrcplgr 29405 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
1093ad2ant1 1133 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph)
11 cusgrrusgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1211nbcplgr 29419 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1310, 12sylan 580 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1413ralrimiva 3124 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
152anim1i 615 . . . . . . . 8 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1615adantr 480 . . . . . . 7 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1711hashnbusgrvd 29514 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
1816, 17syl 17 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
19 fveq2 6828 . . . . . . 7 ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣})))
20 hashdifsn 14327 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
21203ad2antl2 1187 . . . . . . 7 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
2219, 21sylan9eqr 2788 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1))
2318, 22eqtr3d 2768 . . . . 5 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
2423ex 412 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2524ralimdva 3144 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2614, 25mpd 15 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
27 simp1 1136 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph)
28 ovex 7385 . . 3 ((♯‘𝑉) − 1) ∈ V
29 eqid 2731 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3011, 29isrusgr0 29552 . . 3 ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
3127, 28, 30sylancl 586 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
322, 8, 26, 31mpbir3and 1343 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  Vcvv 3436  cdif 3894  c0 4282  {csn 4575   class class class wbr 5093  cfv 6487  (class class class)co 7352  Fincfn 8875  1c1 11013  cmin 11350  cn 12131  0*cxnn0 12460  chash 14243  Vtxcvtx 28981  USGraphcusgr 29134   NeighbVtx cnbgr 29317  ComplGraphccplgr 29394  ComplUSGraphccusgr 29395  VtxDegcvtxdg 29451   RegUSGraph crusgr 29542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-oadd 8395  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-dju 9800  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-n0 12388  df-xnn0 12461  df-z 12475  df-uz 12739  df-xadd 13018  df-fz 13414  df-hash 14244  df-edg 29033  df-uhgr 29043  df-ushgr 29044  df-upgr 29067  df-umgr 29068  df-uspgr 29135  df-usgr 29136  df-nbgr 29318  df-uvtx 29371  df-cplgr 29396  df-cusgr 29397  df-vtxdg 29452  df-rgr 29543  df-rusgr 29544
This theorem is referenced by:  cusgrm1rusgr  29568
  Copyright terms: Public domain W3C validator