Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cusgrrusgr | Structured version Visualization version GIF version |
Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
Ref | Expression |
---|---|
cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
cusgrrusgr | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cusgrusgr 28075 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
2 | 1 | 3ad2ant1 1132 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph) |
3 | hashnncl 14181 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅)) | |
4 | nnm1nn0 12375 | . . . . . 6 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0) | |
5 | 4 | nn0xnn0d 12415 | . . . . 5 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*) |
6 | 3, 5 | syl6bir 253 | . . . 4 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*)) |
7 | 6 | imp 407 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
8 | 7 | 3adant1 1129 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
9 | cusgrcplgr 28076 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
10 | 9 | 3ad2ant1 1132 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph) |
11 | cusgrrusgr.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
12 | 11 | nbcplgr 28090 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
13 | 10, 12 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
14 | 13 | ralrimiva 3139 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
15 | 2 | anim1i 615 | . . . . . . . 8 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
16 | 15 | adantr 481 | . . . . . . 7 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
17 | 11 | hashnbusgrvd 28184 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
18 | 16, 17 | syl 17 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
19 | fveq2 6825 | . . . . . . 7 ⊢ ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣}))) | |
20 | hashdifsn 14229 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) | |
21 | 20 | 3ad2antl2 1185 | . . . . . . 7 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) |
22 | 19, 21 | sylan9eqr 2798 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1)) |
23 | 18, 22 | eqtr3d 2778 | . . . . 5 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
24 | 23 | ex 413 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
25 | 24 | ralimdva 3160 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
26 | 14, 25 | mpd 15 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
27 | simp1 1135 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph) | |
28 | ovex 7370 | . . 3 ⊢ ((♯‘𝑉) − 1) ∈ V | |
29 | eqid 2736 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
30 | 11, 29 | isrusgr0 28222 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
31 | 27, 28, 30 | sylancl 586 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
32 | 2, 8, 26, 31 | mpbir3and 1341 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 Vcvv 3441 ∖ cdif 3895 ∅c0 4269 {csn 4573 class class class wbr 5092 ‘cfv 6479 (class class class)co 7337 Fincfn 8804 1c1 10973 − cmin 11306 ℕcn 12074 ℕ0*cxnn0 12406 ♯chash 14145 Vtxcvtx 27655 USGraphcusgr 27808 NeighbVtx cnbgr 27988 ComplGraphccplgr 28065 ComplUSGraphccusgr 28066 VtxDegcvtxdg 28121 RegUSGraph crusgr 28212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-xadd 12950 df-fz 13341 df-hash 14146 df-edg 27707 df-uhgr 27717 df-ushgr 27718 df-upgr 27741 df-umgr 27742 df-uspgr 27809 df-usgr 27810 df-nbgr 27989 df-uvtx 28042 df-cplgr 28067 df-cusgr 28068 df-vtxdg 28122 df-rgr 28213 df-rusgr 28214 |
This theorem is referenced by: cusgrm1rusgr 28238 |
Copyright terms: Public domain | W3C validator |