MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrrusgr Structured version   Visualization version   GIF version

Theorem cusgrrusgr 27371
Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgrrusgr ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))

Proof of Theorem cusgrrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 27209 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
213ad2ant1 1130 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph)
3 hashnncl 13723 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
4 nnm1nn0 11926 . . . . . 6 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
54nn0xnn0d 11964 . . . . 5 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*)
63, 5syl6bir 257 . . . 4 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*))
76imp 410 . . 3 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
873adant1 1127 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
9 cusgrcplgr 27210 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
1093ad2ant1 1130 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph)
11 cusgrrusgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1211nbcplgr 27224 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1310, 12sylan 583 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1413ralrimiva 3149 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
152anim1i 617 . . . . . . . 8 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1615adantr 484 . . . . . . 7 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1711hashnbusgrvd 27318 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
1816, 17syl 17 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
19 fveq2 6645 . . . . . . 7 ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣})))
20 hashdifsn 13771 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
21203ad2antl2 1183 . . . . . . 7 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
2219, 21sylan9eqr 2855 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1))
2318, 22eqtr3d 2835 . . . . 5 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
2423ex 416 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2524ralimdva 3144 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2614, 25mpd 15 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
27 simp1 1133 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph)
28 ovex 7168 . . 3 ((♯‘𝑉) − 1) ∈ V
29 eqid 2798 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3011, 29isrusgr0 27356 . . 3 ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
3127, 28, 30sylancl 589 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
322, 8, 26, 31mpbir3and 1339 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987  wral 3106  Vcvv 3441  cdif 3878  c0 4243  {csn 4525   class class class wbr 5030  cfv 6324  (class class class)co 7135  Fincfn 8492  1c1 10527  cmin 10859  cn 11625  0*cxnn0 11955  chash 13686  Vtxcvtx 26789  USGraphcusgr 26942   NeighbVtx cnbgr 27122  ComplGraphccplgr 27199  ComplUSGraphccusgr 27200  VtxDegcvtxdg 27255   RegUSGraph crusgr 27346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-nbgr 27123  df-uvtx 27176  df-cplgr 27201  df-cusgr 27202  df-vtxdg 27256  df-rgr 27347  df-rusgr 27348
This theorem is referenced by:  cusgrm1rusgr  27372
  Copyright terms: Public domain W3C validator