| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cusgrrusgr | Structured version Visualization version GIF version | ||
| Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.) |
| Ref | Expression |
|---|---|
| cusgrrusgr.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| cusgrrusgr | ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cusgrusgr 29382 | . . 3 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph) |
| 3 | hashnncl 14291 | . . . . 5 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅)) | |
| 4 | nnm1nn0 12443 | . . . . . 6 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0) | |
| 5 | 4 | nn0xnn0d 12484 | . . . . 5 ⊢ ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 6 | 3, 5 | biimtrrdi 254 | . . . 4 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*)) |
| 7 | 6 | imp 406 | . . 3 ⊢ ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 8 | 7 | 3adant1 1130 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*) |
| 9 | cusgrcplgr 29383 | . . . . . 6 ⊢ (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph) | |
| 10 | 9 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph) |
| 11 | cusgrrusgr.v | . . . . . 6 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 12 | 11 | nbcplgr 29397 | . . . . 5 ⊢ ((𝐺 ∈ ComplGraph ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 13 | 10, 12 | sylan 580 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 14 | 13 | ralrimiva 3121 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) |
| 15 | 2 | anim1i 615 | . . . . . . . 8 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
| 16 | 15 | adantr 480 | . . . . . . 7 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉)) |
| 17 | 11 | hashnbusgrvd 29492 | . . . . . . 7 ⊢ ((𝐺 ∈ USGraph ∧ 𝑣 ∈ 𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 18 | 16, 17 | syl 17 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣)) |
| 19 | fveq2 6826 | . . . . . . 7 ⊢ ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣}))) | |
| 20 | hashdifsn 14339 | . . . . . . . 8 ⊢ ((𝑉 ∈ Fin ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) | |
| 21 | 20 | 3ad2antl2 1187 | . . . . . . 7 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1)) |
| 22 | 19, 21 | sylan9eqr 2786 | . . . . . 6 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1)) |
| 23 | 18, 22 | eqtr3d 2766 | . . . . 5 ⊢ ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 24 | 23 | ex 412 | . . . 4 ⊢ (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣 ∈ 𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 25 | 24 | ralimdva 3141 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣 ∈ 𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))) |
| 26 | 14, 25 | mpd 15 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)) |
| 27 | simp1 1136 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph) | |
| 28 | ovex 7386 | . . 3 ⊢ ((♯‘𝑉) − 1) ∈ V | |
| 29 | eqid 2729 | . . . 4 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 30 | 11, 29 | isrusgr0 29530 | . . 3 ⊢ ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
| 31 | 27, 28, 30 | sylancl 586 | . 2 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))) |
| 32 | 2, 8, 26, 31 | mpbir3and 1343 | 1 ⊢ ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 Vcvv 3438 ∖ cdif 3902 ∅c0 4286 {csn 4579 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 1c1 11029 − cmin 11365 ℕcn 12146 ℕ0*cxnn0 12475 ♯chash 14255 Vtxcvtx 28959 USGraphcusgr 29112 NeighbVtx cnbgr 29295 ComplGraphccplgr 29372 ComplUSGraphccusgr 29373 VtxDegcvtxdg 29429 RegUSGraph crusgr 29520 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-oadd 8399 df-er 8632 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-dju 9816 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-xnn0 12476 df-z 12490 df-uz 12754 df-xadd 13033 df-fz 13429 df-hash 14256 df-edg 29011 df-uhgr 29021 df-ushgr 29022 df-upgr 29045 df-umgr 29046 df-uspgr 29113 df-usgr 29114 df-nbgr 29296 df-uvtx 29349 df-cplgr 29374 df-cusgr 29375 df-vtxdg 29430 df-rgr 29521 df-rusgr 29522 |
| This theorem is referenced by: cusgrm1rusgr 29546 |
| Copyright terms: Public domain | W3C validator |