MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cusgrrusgr Structured version   Visualization version   GIF version

Theorem cusgrrusgr 28237
Description: A complete simple graph with n vertices (at least one) is (n-1)-regular. (Contributed by Alexander van der Vekens, 10-Jul-2018.) (Revised by AV, 26-Dec-2020.)
Hypothesis
Ref Expression
cusgrrusgr.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
cusgrrusgr ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))

Proof of Theorem cusgrrusgr
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 cusgrusgr 28075 . . 3 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ USGraph)
213ad2ant1 1132 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ USGraph)
3 hashnncl 14181 . . . . 5 (𝑉 ∈ Fin → ((♯‘𝑉) ∈ ℕ ↔ 𝑉 ≠ ∅))
4 nnm1nn0 12375 . . . . . 6 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0)
54nn0xnn0d 12415 . . . . 5 ((♯‘𝑉) ∈ ℕ → ((♯‘𝑉) − 1) ∈ ℕ0*)
63, 5syl6bir 253 . . . 4 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) − 1) ∈ ℕ0*))
76imp 407 . . 3 ((𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
873adant1 1129 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) − 1) ∈ ℕ0*)
9 cusgrcplgr 28076 . . . . . 6 (𝐺 ∈ ComplUSGraph → 𝐺 ∈ ComplGraph)
1093ad2ant1 1132 . . . . 5 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplGraph)
11 cusgrrusgr.v . . . . . 6 𝑉 = (Vtx‘𝐺)
1211nbcplgr 28090 . . . . 5 ((𝐺 ∈ ComplGraph ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1310, 12sylan 580 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
1413ralrimiva 3139 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}))
152anim1i 615 . . . . . . . 8 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1615adantr 481 . . . . . . 7 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (𝐺 ∈ USGraph ∧ 𝑣𝑉))
1711hashnbusgrvd 28184 . . . . . . 7 ((𝐺 ∈ USGraph ∧ 𝑣𝑉) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
1816, 17syl 17 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((VtxDeg‘𝐺)‘𝑣))
19 fveq2 6825 . . . . . . 7 ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → (♯‘(𝐺 NeighbVtx 𝑣)) = (♯‘(𝑉 ∖ {𝑣})))
20 hashdifsn 14229 . . . . . . . 8 ((𝑉 ∈ Fin ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
21203ad2antl2 1185 . . . . . . 7 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → (♯‘(𝑉 ∖ {𝑣})) = ((♯‘𝑉) − 1))
2219, 21sylan9eqr 2798 . . . . . 6 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → (♯‘(𝐺 NeighbVtx 𝑣)) = ((♯‘𝑉) − 1))
2318, 22eqtr3d 2778 . . . . 5 ((((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) ∧ (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣})) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
2423ex 413 . . . 4 (((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝑣𝑉) → ((𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2524ralimdva 3160 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 (𝐺 NeighbVtx 𝑣) = (𝑉 ∖ {𝑣}) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1)))
2614, 25mpd 15 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))
27 simp1 1135 . . 3 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 ∈ ComplUSGraph)
28 ovex 7370 . . 3 ((♯‘𝑉) − 1) ∈ V
29 eqid 2736 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
3011, 29isrusgr0 28222 . . 3 ((𝐺 ∈ ComplUSGraph ∧ ((♯‘𝑉) − 1) ∈ V) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
3127, 28, 30sylancl 586 . 2 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → (𝐺 RegUSGraph ((♯‘𝑉) − 1) ↔ (𝐺 ∈ USGraph ∧ ((♯‘𝑉) − 1) ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = ((♯‘𝑉) − 1))))
322, 8, 26, 31mpbir3and 1341 1 ((𝐺 ∈ ComplUSGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → 𝐺 RegUSGraph ((♯‘𝑉) − 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1540  wcel 2105  wne 2940  wral 3061  Vcvv 3441  cdif 3895  c0 4269  {csn 4573   class class class wbr 5092  cfv 6479  (class class class)co 7337  Fincfn 8804  1c1 10973  cmin 11306  cn 12074  0*cxnn0 12406  chash 14145  Vtxcvtx 27655  USGraphcusgr 27808   NeighbVtx cnbgr 27988  ComplGraphccplgr 28065  ComplUSGraphccusgr 28066  VtxDegcvtxdg 28121   RegUSGraph crusgr 28212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-xadd 12950  df-fz 13341  df-hash 14146  df-edg 27707  df-uhgr 27717  df-ushgr 27718  df-upgr 27741  df-umgr 27742  df-uspgr 27809  df-usgr 27810  df-nbgr 27989  df-uvtx 28042  df-cplgr 28067  df-cusgr 28068  df-vtxdg 28122  df-rgr 28213  df-rusgr 28214
This theorem is referenced by:  cusgrm1rusgr  28238
  Copyright terms: Public domain W3C validator