MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 29345
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 29339 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4166 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  USGraphcusgr 29076  ComplGraphccplgr 29336  ComplUSGraphccusgr 29337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3449  df-in 3921  df-cusgr 29339
This theorem is referenced by:  cusgrusgr  29346  cusgrcplgr  29347  iscusgrvtx  29348  cusgruvtxb  29349  iscusgredg  29350  cusgr0  29353  cusgr0v  29355  cusgr1v  29358  cusgrop  29365  cusgrexi  29370  structtocusgr  29373  cusgrres  29376
  Copyright terms: Public domain W3C validator