Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version |
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cusgr 27777 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
2 | 1 | elin2 4136 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2110 USGraphcusgr 27517 ComplGraphccplgr 27774 ComplUSGraphccusgr 27775 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-ext 2711 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1545 df-ex 1787 df-sb 2072 df-clab 2718 df-cleq 2732 df-clel 2818 df-v 3433 df-in 3899 df-cusgr 27777 |
This theorem is referenced by: cusgrusgr 27784 cusgrcplgr 27785 iscusgrvtx 27786 cusgruvtxb 27787 iscusgredg 27788 cusgr0 27791 cusgr0v 27793 cusgr1v 27796 cusgrop 27803 cusgrexi 27808 structtocusgr 27811 cusgrres 27813 |
Copyright terms: Public domain | W3C validator |