MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 27785
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 27779 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4131 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2106  USGraphcusgr 27519  ComplGraphccplgr 27776  ComplUSGraphccusgr 27777
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-cusgr 27779
This theorem is referenced by:  cusgrusgr  27786  cusgrcplgr  27787  iscusgrvtx  27788  cusgruvtxb  27789  iscusgredg  27790  cusgr0  27793  cusgr0v  27795  cusgr1v  27798  cusgrop  27805  cusgrexi  27810  structtocusgr  27813  cusgrres  27815
  Copyright terms: Public domain W3C validator