![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version |
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cusgr 29444 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
2 | 1 | elin2 4213 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2106 USGraphcusgr 29181 ComplGraphccplgr 29441 ComplUSGraphccusgr 29442 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-in 3970 df-cusgr 29444 |
This theorem is referenced by: cusgrusgr 29451 cusgrcplgr 29452 iscusgrvtx 29453 cusgruvtxb 29454 iscusgredg 29455 cusgr0 29458 cusgr0v 29460 cusgr1v 29463 cusgrop 29470 cusgrexi 29475 structtocusgr 29478 cusgrres 29481 |
Copyright terms: Public domain | W3C validator |