| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cusgr 29346 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
| 2 | 1 | elin2 4169 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2109 USGraphcusgr 29083 ComplGraphccplgr 29343 ComplUSGraphccusgr 29344 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-in 3924 df-cusgr 29346 |
| This theorem is referenced by: cusgrusgr 29353 cusgrcplgr 29354 iscusgrvtx 29355 cusgruvtxb 29356 iscusgredg 29357 cusgr0 29360 cusgr0v 29362 cusgr1v 29365 cusgrop 29372 cusgrexi 29377 structtocusgr 29380 cusgrres 29383 |
| Copyright terms: Public domain | W3C validator |