MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 27783
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 27777 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4136 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396  wcel 2110  USGraphcusgr 27517  ComplGraphccplgr 27774  ComplUSGraphccusgr 27775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-v 3433  df-in 3899  df-cusgr 27777
This theorem is referenced by:  cusgrusgr  27784  cusgrcplgr  27785  iscusgrvtx  27786  cusgruvtxb  27787  iscusgredg  27788  cusgr0  27791  cusgr0v  27793  cusgr1v  27796  cusgrop  27803  cusgrexi  27808  structtocusgr  27811  cusgrres  27813
  Copyright terms: Public domain W3C validator