| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cusgr 29388 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
| 2 | 1 | elin2 4153 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2111 USGraphcusgr 29125 ComplGraphccplgr 29385 ComplUSGraphccusgr 29386 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-in 3909 df-cusgr 29388 |
| This theorem is referenced by: cusgrusgr 29395 cusgrcplgr 29396 iscusgrvtx 29397 cusgruvtxb 29398 iscusgredg 29399 cusgr0 29402 cusgr0v 29404 cusgr1v 29407 cusgrop 29414 cusgrexi 29419 structtocusgr 29422 cusgrres 29425 |
| Copyright terms: Public domain | W3C validator |