MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 29381
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 29375 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4156 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2109  USGraphcusgr 29112  ComplGraphccplgr 29372  ComplUSGraphccusgr 29373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3440  df-in 3912  df-cusgr 29375
This theorem is referenced by:  cusgrusgr  29382  cusgrcplgr  29383  iscusgrvtx  29384  cusgruvtxb  29385  iscusgredg  29386  cusgr0  29389  cusgr0v  29391  cusgr1v  29394  cusgrop  29401  cusgrexi  29406  structtocusgr  29409  cusgrres  29412
  Copyright terms: Public domain W3C validator