| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version | ||
| Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
| Ref | Expression |
|---|---|
| iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cusgr 29392 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
| 2 | 1 | elin2 4152 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2113 USGraphcusgr 29129 ComplGraphccplgr 29389 ComplUSGraphccusgr 29390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-v 3439 df-in 3905 df-cusgr 29392 |
| This theorem is referenced by: cusgrusgr 29399 cusgrcplgr 29400 iscusgrvtx 29401 cusgruvtxb 29402 iscusgredg 29403 cusgr0 29406 cusgr0v 29408 cusgr1v 29411 cusgrop 29418 cusgrexi 29423 structtocusgr 29426 cusgrres 29429 |
| Copyright terms: Public domain | W3C validator |