Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version |
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cusgr 27682 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
2 | 1 | elin2 4127 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 ∈ wcel 2108 USGraphcusgr 27422 ComplGraphccplgr 27679 ComplUSGraphccusgr 27680 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-cusgr 27682 |
This theorem is referenced by: cusgrusgr 27689 cusgrcplgr 27690 iscusgrvtx 27691 cusgruvtxb 27692 iscusgredg 27693 cusgr0 27696 cusgr0v 27698 cusgr1v 27701 cusgrop 27708 cusgrexi 27713 structtocusgr 27716 cusgrres 27718 |
Copyright terms: Public domain | W3C validator |