MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 29308
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 29302 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4195 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 394  wcel 2098  USGraphcusgr 29039  ComplGraphccplgr 29299  ComplUSGraphccusgr 29300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-v 3463  df-in 3951  df-cusgr 29302
This theorem is referenced by:  cusgrusgr  29309  cusgrcplgr  29310  iscusgrvtx  29311  cusgruvtxb  29312  iscusgredg  29313  cusgr0  29316  cusgr0v  29318  cusgr1v  29321  cusgrop  29328  cusgrexi  29333  structtocusgr  29336  cusgrres  29339
  Copyright terms: Public domain W3C validator