MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgr Structured version   Visualization version   GIF version

Theorem iscusgr 29453
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.)
Assertion
Ref Expression
iscusgr (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))

Proof of Theorem iscusgr
StepHypRef Expression
1 df-cusgr 29447 . 2 ComplUSGraph = (USGraph ∩ ComplGraph)
21elin2 4226 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wcel 2108  USGraphcusgr 29184  ComplGraphccplgr 29444  ComplUSGraphccusgr 29445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-in 3983  df-cusgr 29447
This theorem is referenced by:  cusgrusgr  29454  cusgrcplgr  29455  iscusgrvtx  29456  cusgruvtxb  29457  iscusgredg  29458  cusgr0  29461  cusgr0v  29463  cusgr1v  29466  cusgrop  29473  cusgrexi  29478  structtocusgr  29481  cusgrres  29484
  Copyright terms: Public domain W3C validator