Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version |
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cusgr 27779 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
2 | 1 | elin2 4131 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∈ wcel 2106 USGraphcusgr 27519 ComplGraphccplgr 27776 ComplUSGraphccusgr 27777 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-cusgr 27779 |
This theorem is referenced by: cusgrusgr 27786 cusgrcplgr 27787 iscusgrvtx 27788 cusgruvtxb 27789 iscusgredg 27790 cusgr0 27793 cusgr0v 27795 cusgr1v 27798 cusgrop 27805 cusgrexi 27810 structtocusgr 27813 cusgrres 27815 |
Copyright terms: Public domain | W3C validator |