![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusgr | Structured version Visualization version GIF version |
Description: The property of being a complete simple graph. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgr | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cusgr 29447 | . 2 ⊢ ComplUSGraph = (USGraph ∩ ComplGraph) | |
2 | 1 | elin2 4226 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 USGraphcusgr 29184 ComplGraphccplgr 29444 ComplUSGraphccusgr 29445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-in 3983 df-cusgr 29447 |
This theorem is referenced by: cusgrusgr 29454 cusgrcplgr 29455 iscusgrvtx 29456 cusgruvtxb 29457 iscusgredg 29458 cusgr0 29461 cusgr0v 29463 cusgr1v 29466 cusgrop 29473 cusgrexi 29478 structtocusgr 29481 cusgrres 29484 |
Copyright terms: Public domain | W3C validator |