MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscusgrvtx Structured version   Visualization version   GIF version

Theorem iscusgrvtx 29385
Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.)
Hypothesis
Ref Expression
iscusgrvtx.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
iscusgrvtx (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Distinct variable groups:   𝑣,𝐺   𝑣,𝑉

Proof of Theorem iscusgrvtx
StepHypRef Expression
1 iscusgr 29382 . 2 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph))
2 iscusgrvtx.v . . . 4 𝑉 = (Vtx‘𝐺)
32iscplgr 29379 . . 3 (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
43pm5.32i 574 . 2 ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
51, 4bitri 275 1 (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣𝑉 𝑣 ∈ (UnivVtx‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  cfv 6486  Vtxcvtx 28960  USGraphcusgr 29113  UnivVtxcuvtx 29349  ComplGraphccplgr 29373  ComplUSGraphccusgr 29374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356  df-uvtx 29350  df-cplgr 29375  df-cusgr 29376
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator