![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iscusgrvtx | Structured version Visualization version GIF version |
Description: A simple graph is complete iff all vertices are uniuversal. (Contributed by AV, 1-Nov-2020.) |
Ref | Expression |
---|---|
iscusgrvtx.v | ⊢ 𝑉 = (Vtx‘𝐺) |
Ref | Expression |
---|---|
iscusgrvtx | ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iscusgr 29458 | . 2 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph)) | |
2 | iscusgrvtx.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
3 | 2 | iscplgr 29455 | . . 3 ⊢ (𝐺 ∈ USGraph → (𝐺 ∈ ComplGraph ↔ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
4 | 3 | pm5.32i 574 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐺 ∈ ComplGraph) ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
5 | 1, 4 | bitri 275 | 1 ⊢ (𝐺 ∈ ComplUSGraph ↔ (𝐺 ∈ USGraph ∧ ∀𝑣 ∈ 𝑉 𝑣 ∈ (UnivVtx‘𝐺))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∀wral 3060 ‘cfv 6566 Vtxcvtx 29036 USGraphcusgr 29189 UnivVtxcuvtx 29425 ComplGraphccplgr 29449 ComplUSGraphccusgr 29450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-iota 6519 df-fun 6568 df-fv 6574 df-ov 7438 df-uvtx 29426 df-cplgr 29451 df-cusgr 29452 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |