![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcnv | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5841 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv | ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 5161 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦) | |
2 | 1 | opabbii 5173 | . . 3 ⊢ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} |
3 | csbopab 5513 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} | |
4 | df-cnv 5642 | . . 3 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
5 | 2, 3, 4 | 3eqtr4ri 2772 | . 2 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
6 | df-cnv 5642 | . . 3 ⊢ ◡𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} | |
7 | 6 | csbeq2i 3864 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
8 | 5, 7 | eqtr4i 2764 | 1 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 [wsbc 3740 ⦋csb 3856 class class class wbr 5106 {copab 5168 ◡ccnv 5633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-cnv 5642 |
This theorem is referenced by: csbpredg 6260 esum2dlem 32748 |
Copyright terms: Public domain | W3C validator |