Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbcnv | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5793 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv | ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 5129 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦) | |
2 | 1 | opabbii 5141 | . . 3 ⊢ {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} |
3 | csbopab 5468 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} | |
4 | df-cnv 5597 | . . 3 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
5 | 2, 3, 4 | 3eqtr4ri 2777 | . 2 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
6 | df-cnv 5597 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} | |
7 | 6 | csbeq2i 3840 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
8 | 5, 7 | eqtr4i 2769 | 1 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 [wsbc 3716 ⦋csb 3832 class class class wbr 5074 {copab 5136 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 |
This theorem is referenced by: csbpredg 6208 esum2dlem 32060 |
Copyright terms: Public domain | W3C validator |