Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbcnv | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5826 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv | ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 5147 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦) | |
2 | 1 | opabbii 5159 | . . 3 ⊢ {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} |
3 | csbopab 5499 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} | |
4 | df-cnv 5628 | . . 3 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
5 | 2, 3, 4 | 3eqtr4ri 2775 | . 2 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
6 | df-cnv 5628 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} | |
7 | 6 | csbeq2i 3851 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
8 | 5, 7 | eqtr4i 2767 | 1 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1540 [wsbc 3727 ⦋csb 3843 class class class wbr 5092 {copab 5154 ◡ccnv 5619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 |
This theorem is referenced by: csbpredg 6244 esum2dlem 32358 |
Copyright terms: Public domain | W3C validator |