![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcnv | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5887 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv | ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 5203 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦) | |
2 | 1 | opabbii 5215 | . . 3 ⊢ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} |
3 | csbopab 5557 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} | |
4 | df-cnv 5686 | . . 3 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
5 | 2, 3, 4 | 3eqtr4ri 2767 | . 2 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
6 | df-cnv 5686 | . . 3 ⊢ ◡𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} | |
7 | 6 | csbeq2i 3900 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
8 | 5, 7 | eqtr4i 2759 | 1 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 [wsbc 3776 ⦋csb 3892 class class class wbr 5148 {copab 5210 ◡ccnv 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5299 ax-nul 5306 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5149 df-opab 5211 df-cnv 5686 |
This theorem is referenced by: csbpredg 6311 esum2dlem 33711 |
Copyright terms: Public domain | W3C validator |