![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcnv | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnvgALT 5884 without a sethood antecedent but depending on more axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbcnv | ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr 5203 | . . . 4 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦) | |
2 | 1 | opabbii 5215 | . . 3 ⊢ {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} |
3 | csbopab 5555 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} | |
4 | df-cnv 5684 | . . 3 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
5 | 2, 3, 4 | 3eqtr4ri 2771 | . 2 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
6 | df-cnv 5684 | . . 3 ⊢ ◡𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} | |
7 | 6 | csbeq2i 3901 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
8 | 5, 7 | eqtr4i 2763 | 1 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 [wsbc 3777 ⦋csb 3893 class class class wbr 5148 {copab 5210 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-br 5149 df-opab 5211 df-cnv 5684 |
This theorem is referenced by: csbpredg 6306 esum2dlem 33085 |
Copyright terms: Public domain | W3C validator |