| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5822 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3436 class class class wbr 5092 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: cnvco 5828 dfrn2 5831 dfdm4 5838 cnvsym 6063 intasym 6064 asymref 6065 qfto 6070 dminss 6102 imainss 6103 dminxp 6129 cnvcnv3 6137 cnvpo 6235 cnvso 6236 dffun2 6492 funcnvsn 6532 funcnv2 6550 fun2cnv 6553 imadif 6566 f1ompt 7045 foeqcnvco 7237 f1eqcocnv 7238 fliftcnv 7248 isocnv2 7268 fsplit 8050 ercnv 8646 ecid 8707 omxpenlem 8995 sbthcl 9016 fimax2g 9175 dfsup2 9334 eqinf 9375 infval 9377 infcllem 9378 wofib 9437 oemapso 9578 cflim2 10157 fin23lem40 10245 isfin1-3 10280 fin12 10307 negiso 12105 dfinfre 12106 infrenegsup 12108 xrinfmss2 13213 trclublem 14902 imasleval 17445 invsym2 17670 oppcsect2 17686 oduprs 18206 odupos 18232 oduposb 18233 odulub 18311 oduglb 18313 posglbdg 18319 gsumcom3 19857 ordtbas2 23076 ordtcnv 23086 ordtrest2 23089 utop2nei 24136 utop3cls 24137 dvlt0 25908 dvcnvrelem1 25920 nomaxmo 27608 ofpreima 32616 funcnvmpt 32618 odutos 32919 tosglblem 32925 mgccnv 32950 ordtcnvNEW 33903 ordtrest2NEW 33906 xrge0iifiso 33918 erdszelem9 35192 coepr 35746 dffr5 35747 dfso2 35748 cnvco1 35752 cnvco2 35753 pocnv 35756 txpss3v 35872 brtxp 35874 brpprod3b 35881 idsset 35884 fixcnv 35902 brimage 35920 brcup 35933 brcap 35934 dfrecs2 35944 dfrdg4 35945 dfint3 35946 imagesset 35947 brlb 35949 fvline 36138 ellines 36146 trer 36310 poimirlem31 37651 poimir 37653 frinfm 37735 xrnss3v 38360 rencldnfilem 42813 cnvssco 43599 psshepw 43781 dffrege115 43971 frege131 43987 frege133 43989 brpermmodel 44997 lambert0 46891 lamberte 46892 gte-lteh 49731 gt-lth 49732 |
| Copyright terms: Public domain | W3C validator |