![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5892 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 ◡ccnv 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-cnv 5696 |
This theorem is referenced by: cnvco 5898 dfrn2 5901 dfdm4 5908 cnvsym 6134 cnvsymOLD 6135 cnvsymOLDOLD 6136 intasym 6137 asymref 6138 qfto 6143 dminss 6174 imainss 6175 dminxp 6201 cnvcnv3 6209 cnvpo 6308 cnvso 6309 dffun2 6572 dffun2OLD 6573 dffun2OLDOLD 6574 funcnvsn 6617 funcnv2 6635 fun2cnv 6638 imadif 6651 f1ompt 7130 foeqcnvco 7319 f1eqcocnv 7320 fliftcnv 7330 isocnv2 7350 fsplit 8140 ercnv 8764 ecid 8820 omxpenlem 9111 sbthcl 9133 fimax2g 9319 dfsup2 9481 eqinf 9521 infval 9523 infcllem 9524 wofib 9582 oemapso 9719 cflim2 10300 fin23lem40 10388 isfin1-3 10423 fin12 10450 negiso 12245 dfinfre 12246 infrenegsup 12248 xrinfmss2 13349 trclublem 15030 imasleval 17587 invsym2 17810 oppcsect2 17826 oduprs 18357 odupos 18385 oduposb 18386 odulub 18464 oduglb 18466 posglbdg 18472 gsumcom3 20010 ordtbas2 23214 ordtcnv 23224 ordtrest2 23227 utop2nei 24274 utop3cls 24275 dvlt0 26058 dvcnvrelem1 26070 nomaxmo 27757 ofpreima 32681 funcnvmpt 32683 odutos 32942 tosglblem 32948 mgccnv 32973 ordtcnvNEW 33880 ordtrest2NEW 33883 xrge0iifiso 33895 erdszelem9 35183 coepr 35732 dffr5 35733 dfso2 35734 cnvco1 35738 cnvco2 35739 pocnv 35742 txpss3v 35859 brtxp 35861 brpprod3b 35868 idsset 35871 fixcnv 35889 brimage 35907 brcup 35920 brcap 35921 dfrecs2 35931 dfrdg4 35932 dfint3 35933 imagesset 35934 brlb 35936 fvline 36125 ellines 36133 trer 36298 poimirlem31 37637 poimir 37639 frinfm 37721 xrnss3v 38353 rencldnfilem 42807 cnvssco 43595 psshepw 43777 dffrege115 43967 frege131 43983 frege133 43985 gte-lteh 48956 gt-lth 48957 |
Copyright terms: Public domain | W3C validator |