![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5904 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 691 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3488 class class class wbr 5166 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: cnvco 5910 dfrn2 5913 dfdm4 5920 cnvsym 6144 cnvsymOLD 6145 cnvsymOLDOLD 6146 intasym 6147 asymref 6148 qfto 6153 dminss 6184 imainss 6185 dminxp 6211 cnvcnv3 6219 cnvpo 6318 cnvso 6319 dffun2 6583 dffun2OLD 6584 dffun2OLDOLD 6585 funcnvsn 6628 funcnv2 6646 fun2cnv 6649 imadif 6662 f1ompt 7145 foeqcnvco 7336 f1eqcocnv 7337 fliftcnv 7347 isocnv2 7367 fsplit 8158 ercnv 8784 ecid 8840 omxpenlem 9139 sbthcl 9161 fimax2g 9350 dfsup2 9513 eqinf 9553 infval 9555 infcllem 9556 wofib 9614 oemapso 9751 cflim2 10332 fin23lem40 10420 isfin1-3 10455 fin12 10482 negiso 12275 dfinfre 12276 infrenegsup 12278 xrinfmss2 13373 trclublem 15044 imasleval 17601 invsym2 17824 oppcsect2 17840 odupos 18398 oduposb 18399 odulub 18477 oduglb 18479 posglbdg 18485 gsumcom3 20020 ordtbas2 23220 ordtcnv 23230 ordtrest2 23233 utop2nei 24280 utop3cls 24281 dvlt0 26064 dvcnvrelem1 26076 nomaxmo 27761 ofpreima 32683 funcnvmpt 32685 oduprs 32937 odutos 32941 tosglblem 32947 mgccnv 32972 ordtcnvNEW 33866 ordtrest2NEW 33869 xrge0iifiso 33881 erdszelem9 35167 coepr 35715 dffr5 35716 dfso2 35717 cnvco1 35721 cnvco2 35722 pocnv 35725 txpss3v 35842 brtxp 35844 brpprod3b 35851 idsset 35854 fixcnv 35872 brimage 35890 brcup 35903 brcap 35904 dfrecs2 35914 dfrdg4 35915 dfint3 35916 imagesset 35917 brlb 35919 fvline 36108 ellines 36116 trer 36282 poimirlem31 37611 poimir 37613 frinfm 37695 xrnss3v 38328 rencldnfilem 42776 cnvssco 43568 psshepw 43750 dffrege115 43940 frege131 43956 frege133 43958 gte-lteh 48818 gt-lth 48819 |
Copyright terms: Public domain | W3C validator |