Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5777 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 688 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2108 Vcvv 3422 class class class wbr 5070 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: cnvco 5783 dfrn2 5786 dfdm4 5793 cnvsym 6008 intasym 6009 asymref 6010 qfto 6015 dminss 6045 imainss 6046 dminxp 6072 cnvcnv3 6080 cnvpo 6179 cnvso 6180 dffun2 6428 funcnvsn 6468 funcnv2 6486 fun2cnv 6489 imadif 6502 f1ompt 6967 foeqcnvco 7152 f1eqcocnv 7153 f1eqcocnvOLD 7154 fliftcnv 7162 isocnv2 7182 fsplit 7928 fsplitOLD 7929 ercnv 8477 ecid 8529 omxpenlem 8813 sbthcl 8835 fimax2g 8990 dfsup2 9133 eqinf 9173 infval 9175 infcllem 9176 wofib 9234 oemapso 9370 cflim2 9950 fin23lem40 10038 isfin1-3 10073 fin12 10100 negiso 11885 dfinfre 11886 infrenegsup 11888 xrinfmss2 12974 trclublem 14634 imasleval 17169 invsym2 17392 oppcsect2 17408 odupos 17961 oduposb 17962 odulub 18040 oduglb 18042 posglbdg 18048 gsumcom3 19494 ordtbas2 22250 ordtcnv 22260 ordtrest2 22263 utop2nei 23310 utop3cls 23311 dvlt0 25074 dvcnvrelem1 25086 ofpreima 30904 funcnvmpt 30906 oduprs 31144 odutos 31148 tosglblem 31154 mgccnv 31179 ordtcnvNEW 31772 ordtrest2NEW 31775 xrge0iifiso 31787 erdszelem9 33061 coepr 33626 dffr5 33627 dfso2 33628 cnvco1 33632 cnvco2 33633 pocnv 33636 nomaxmo 33828 txpss3v 34107 brtxp 34109 brpprod3b 34116 idsset 34119 fixcnv 34137 brimage 34155 brcup 34168 brcap 34169 dfrecs2 34179 dfrdg4 34180 dfint3 34181 imagesset 34182 brlb 34184 fvline 34373 ellines 34381 trer 34432 poimirlem31 35735 poimir 35737 frinfm 35820 xrnss3v 36429 rencldnfilem 40558 cnvssco 41103 psshepw 41285 dffrege115 41475 frege131 41491 frege133 41493 gte-lteh 46314 gt-lth 46315 |
Copyright terms: Public domain | W3C validator |