| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5833 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnvco 5839 dfrn2 5842 dfdm4 5849 cnvsym 6073 cnvsymOLD 6074 cnvsymOLDOLD 6075 intasym 6076 asymref 6077 qfto 6082 dminss 6114 imainss 6115 dminxp 6141 cnvcnv3 6149 cnvpo 6248 cnvso 6249 dffun2 6509 dffun2OLD 6510 funcnvsn 6550 funcnv2 6568 fun2cnv 6571 imadif 6584 f1ompt 7065 foeqcnvco 7257 f1eqcocnv 7258 fliftcnv 7268 isocnv2 7288 fsplit 8073 ercnv 8669 ecid 8730 omxpenlem 9019 sbthcl 9040 fimax2g 9209 dfsup2 9371 eqinf 9412 infval 9414 infcllem 9415 wofib 9474 oemapso 9613 cflim2 10194 fin23lem40 10282 isfin1-3 10317 fin12 10344 negiso 12141 dfinfre 12142 infrenegsup 12144 xrinfmss2 13249 trclublem 14938 imasleval 17481 invsym2 17706 oppcsect2 17722 oduprs 18242 odupos 18268 oduposb 18269 odulub 18347 oduglb 18349 posglbdg 18355 gsumcom3 19893 ordtbas2 23112 ordtcnv 23122 ordtrest2 23125 utop2nei 24172 utop3cls 24173 dvlt0 25944 dvcnvrelem1 25956 nomaxmo 27644 ofpreima 32640 funcnvmpt 32642 odutos 32941 tosglblem 32947 mgccnv 32972 ordtcnvNEW 33904 ordtrest2NEW 33907 xrge0iifiso 33919 erdszelem9 35180 coepr 35734 dffr5 35735 dfso2 35736 cnvco1 35740 cnvco2 35741 pocnv 35744 txpss3v 35860 brtxp 35862 brpprod3b 35869 idsset 35872 fixcnv 35890 brimage 35908 brcup 35921 brcap 35922 dfrecs2 35932 dfrdg4 35933 dfint3 35934 imagesset 35935 brlb 35937 fvline 36126 ellines 36134 trer 36298 poimirlem31 37639 poimir 37641 frinfm 37723 xrnss3v 38348 rencldnfilem 42802 cnvssco 43589 psshepw 43771 dffrege115 43961 frege131 43977 frege133 43979 brpermmodel 44987 lambert0 46882 lamberte 46883 gte-lteh 49709 gt-lth 49710 |
| Copyright terms: Public domain | W3C validator |