Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5782 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3430 class class class wbr 5074 ◡ccnv 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3432 df-dif 3890 df-un 3892 df-nul 4258 df-if 4461 df-sn 4563 df-pr 4565 df-op 4569 df-br 5075 df-opab 5137 df-cnv 5593 |
This theorem is referenced by: cnvco 5788 dfrn2 5791 dfdm4 5798 cnvsym 6013 intasym 6014 asymref 6015 qfto 6020 dminss 6050 imainss 6051 dminxp 6077 cnvcnv3 6085 cnvpo 6184 cnvso 6185 dffun2 6437 funcnvsn 6477 funcnv2 6495 fun2cnv 6498 imadif 6511 f1ompt 6978 foeqcnvco 7165 f1eqcocnv 7166 f1eqcocnvOLD 7167 fliftcnv 7175 isocnv2 7195 fsplit 7945 fsplitOLD 7946 ercnv 8507 ecid 8559 omxpenlem 8848 sbthcl 8870 fimax2g 9048 dfsup2 9191 eqinf 9231 infval 9233 infcllem 9234 wofib 9292 oemapso 9428 cflim2 10007 fin23lem40 10095 isfin1-3 10130 fin12 10157 negiso 11943 dfinfre 11944 infrenegsup 11946 xrinfmss2 13033 trclublem 14694 imasleval 17240 invsym2 17463 oppcsect2 17479 odupos 18034 oduposb 18035 odulub 18113 oduglb 18115 posglbdg 18121 gsumcom3 19567 ordtbas2 22330 ordtcnv 22340 ordtrest2 22343 utop2nei 23390 utop3cls 23391 dvlt0 25157 dvcnvrelem1 25169 ofpreima 30988 funcnvmpt 30990 oduprs 31228 odutos 31232 tosglblem 31238 mgccnv 31263 ordtcnvNEW 31856 ordtrest2NEW 31859 xrge0iifiso 31871 erdszelem9 33147 coepr 33706 dffr5 33707 dfso2 33708 cnvco1 33712 cnvco2 33713 pocnv 33716 nomaxmo 33887 txpss3v 34166 brtxp 34168 brpprod3b 34175 idsset 34178 fixcnv 34196 brimage 34214 brcup 34227 brcap 34228 dfrecs2 34238 dfrdg4 34239 dfint3 34240 imagesset 34241 brlb 34243 fvline 34432 ellines 34440 trer 34491 poimirlem31 35794 poimir 35796 frinfm 35879 xrnss3v 36488 rencldnfilem 40628 cnvssco 41173 psshepw 41355 dffrege115 41545 frege131 41561 frege133 41563 gte-lteh 46384 gt-lth 46385 |
Copyright terms: Public domain | W3C validator |