| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5818 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: cnvco 5824 dfrn2 5827 dfdm4 5834 cnvsym 6060 intasym 6061 asymref 6062 qfto 6067 dminss 6100 imainss 6101 dminxp 6127 cnvcnv3 6135 cnvpo 6234 cnvso 6235 dffun2 6491 funcnvsn 6531 funcnv2 6549 fun2cnv 6552 imadif 6565 f1ompt 7044 foeqcnvco 7234 f1eqcocnv 7235 fliftcnv 7245 isocnv2 7265 fsplit 8047 ercnv 8643 ecid 8704 omxpenlem 8991 sbthcl 9012 fimax2g 9170 dfsup2 9328 eqinf 9369 infval 9371 infcllem 9372 wofib 9431 oemapso 9572 cflim2 10154 fin23lem40 10242 isfin1-3 10277 fin12 10304 negiso 12102 dfinfre 12103 infrenegsup 12105 xrinfmss2 13210 trclublem 14902 imasleval 17445 invsym2 17670 oppcsect2 17686 oduprs 18206 odupos 18232 oduposb 18233 odulub 18311 oduglb 18313 posglbdg 18319 chnrev 18533 gsumcom3 19890 ordtbas2 23106 ordtcnv 23116 ordtrest2 23119 utop2nei 24165 utop3cls 24166 dvlt0 25937 dvcnvrelem1 25949 nomaxmo 27637 ofpreima 32647 funcnvmpt 32649 odutos 32949 tosglblem 32955 mgccnv 32980 ordtcnvNEW 33933 ordtrest2NEW 33936 xrge0iifiso 33948 erdszelem9 35243 coepr 35797 dffr5 35798 dfso2 35799 cnvco1 35803 cnvco2 35804 pocnv 35807 txpss3v 35920 brtxp 35922 brpprod3b 35929 idsset 35932 fixcnv 35950 brimage 35968 brcup 35981 brcap 35982 dfrecs2 35994 dfrdg4 35995 dfint3 35996 imagesset 35997 brlb 35999 fvline 36188 ellines 36196 trer 36360 poimirlem31 37690 poimir 37692 frinfm 37774 xrnss3v 38404 rencldnfilem 42912 cnvssco 43698 psshepw 43880 dffrege115 44070 frege131 44086 frege133 44088 brpermmodel 45095 lambert0 46986 lamberte 46987 gte-lteh 49826 gt-lth 49827 |
| Copyright terms: Public domain | W3C validator |