Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
Ref | Expression |
---|---|
opelcnv.1 | ⊢ 𝐴 ∈ V |
opelcnv.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | brcnvg 5788 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
4 | 1, 2, 3 | mp2an 689 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∈ wcel 2106 Vcvv 3432 class class class wbr 5074 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 |
This theorem is referenced by: cnvco 5794 dfrn2 5797 dfdm4 5804 cnvsym 6019 intasym 6020 asymref 6021 qfto 6026 dminss 6056 imainss 6057 dminxp 6083 cnvcnv3 6091 cnvpo 6190 cnvso 6191 dffun2 6443 dffun2OLD 6444 funcnvsn 6484 funcnv2 6502 fun2cnv 6505 imadif 6518 f1ompt 6985 foeqcnvco 7172 f1eqcocnv 7173 f1eqcocnvOLD 7174 fliftcnv 7182 isocnv2 7202 fsplit 7957 fsplitOLD 7958 ercnv 8519 ecid 8571 omxpenlem 8860 sbthcl 8882 fimax2g 9060 dfsup2 9203 eqinf 9243 infval 9245 infcllem 9246 wofib 9304 oemapso 9440 cflim2 10019 fin23lem40 10107 isfin1-3 10142 fin12 10169 negiso 11955 dfinfre 11956 infrenegsup 11958 xrinfmss2 13045 trclublem 14706 imasleval 17252 invsym2 17475 oppcsect2 17491 odupos 18046 oduposb 18047 odulub 18125 oduglb 18127 posglbdg 18133 gsumcom3 19579 ordtbas2 22342 ordtcnv 22352 ordtrest2 22355 utop2nei 23402 utop3cls 23403 dvlt0 25169 dvcnvrelem1 25181 ofpreima 31002 funcnvmpt 31004 oduprs 31242 odutos 31246 tosglblem 31252 mgccnv 31277 ordtcnvNEW 31870 ordtrest2NEW 31873 xrge0iifiso 31885 erdszelem9 33161 coepr 33720 dffr5 33721 dfso2 33722 cnvco1 33726 cnvco2 33727 pocnv 33730 nomaxmo 33901 txpss3v 34180 brtxp 34182 brpprod3b 34189 idsset 34192 fixcnv 34210 brimage 34228 brcup 34241 brcap 34242 dfrecs2 34252 dfrdg4 34253 dfint3 34254 imagesset 34255 brlb 34257 fvline 34446 ellines 34454 trer 34505 poimirlem31 35808 poimir 35810 frinfm 35893 xrnss3v 36502 rencldnfilem 40642 cnvssco 41214 psshepw 41396 dffrege115 41586 frege131 41602 frege133 41604 gte-lteh 46428 gt-lth 46429 |
Copyright terms: Public domain | W3C validator |