| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5859 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2108 Vcvv 3459 class class class wbr 5119 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-cnv 5662 |
| This theorem is referenced by: cnvco 5865 dfrn2 5868 dfdm4 5875 cnvsym 6101 cnvsymOLD 6102 cnvsymOLDOLD 6103 intasym 6104 asymref 6105 qfto 6110 dminss 6142 imainss 6143 dminxp 6169 cnvcnv3 6177 cnvpo 6276 cnvso 6277 dffun2 6540 dffun2OLD 6541 dffun2OLDOLD 6542 funcnvsn 6585 funcnv2 6603 fun2cnv 6606 imadif 6619 f1ompt 7100 foeqcnvco 7292 f1eqcocnv 7293 fliftcnv 7303 isocnv2 7323 fsplit 8114 ercnv 8738 ecid 8794 omxpenlem 9085 sbthcl 9107 fimax2g 9292 dfsup2 9454 eqinf 9495 infval 9497 infcllem 9498 wofib 9557 oemapso 9694 cflim2 10275 fin23lem40 10363 isfin1-3 10398 fin12 10425 negiso 12220 dfinfre 12221 infrenegsup 12223 xrinfmss2 13325 trclublem 15012 imasleval 17553 invsym2 17774 oppcsect2 17790 oduprs 18310 odupos 18336 oduposb 18337 odulub 18415 oduglb 18417 posglbdg 18423 gsumcom3 19957 ordtbas2 23127 ordtcnv 23137 ordtrest2 23140 utop2nei 24187 utop3cls 24188 dvlt0 25960 dvcnvrelem1 25972 nomaxmo 27660 ofpreima 32589 funcnvmpt 32591 odutos 32894 tosglblem 32900 mgccnv 32925 ordtcnvNEW 33897 ordtrest2NEW 33900 xrge0iifiso 33912 erdszelem9 35167 coepr 35716 dffr5 35717 dfso2 35718 cnvco1 35722 cnvco2 35723 pocnv 35726 txpss3v 35842 brtxp 35844 brpprod3b 35851 idsset 35854 fixcnv 35872 brimage 35890 brcup 35903 brcap 35904 dfrecs2 35914 dfrdg4 35915 dfint3 35916 imagesset 35917 brlb 35919 fvline 36108 ellines 36116 trer 36280 poimirlem31 37621 poimir 37623 frinfm 37705 xrnss3v 38336 rencldnfilem 42790 cnvssco 43577 psshepw 43759 dffrege115 43949 frege131 43965 frege133 43967 brpermmodel 44976 lambert0 46867 lamberte 46868 gte-lteh 49538 gt-lth 49539 |
| Copyright terms: Public domain | W3C validator |