| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5843 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3447 class class class wbr 5107 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 |
| This theorem is referenced by: cnvco 5849 dfrn2 5852 dfdm4 5859 cnvsym 6085 cnvsymOLD 6086 cnvsymOLDOLD 6087 intasym 6088 asymref 6089 qfto 6094 dminss 6126 imainss 6127 dminxp 6153 cnvcnv3 6161 cnvpo 6260 cnvso 6261 dffun2 6521 dffun2OLD 6522 dffun2OLDOLD 6523 funcnvsn 6566 funcnv2 6584 fun2cnv 6587 imadif 6600 f1ompt 7083 foeqcnvco 7275 f1eqcocnv 7276 fliftcnv 7286 isocnv2 7306 fsplit 8096 ercnv 8692 ecid 8753 omxpenlem 9042 sbthcl 9063 fimax2g 9233 dfsup2 9395 eqinf 9436 infval 9438 infcllem 9439 wofib 9498 oemapso 9635 cflim2 10216 fin23lem40 10304 isfin1-3 10339 fin12 10366 negiso 12163 dfinfre 12164 infrenegsup 12166 xrinfmss2 13271 trclublem 14961 imasleval 17504 invsym2 17725 oppcsect2 17741 oduprs 18261 odupos 18287 oduposb 18288 odulub 18366 oduglb 18368 posglbdg 18374 gsumcom3 19908 ordtbas2 23078 ordtcnv 23088 ordtrest2 23091 utop2nei 24138 utop3cls 24139 dvlt0 25910 dvcnvrelem1 25922 nomaxmo 27610 ofpreima 32589 funcnvmpt 32591 odutos 32894 tosglblem 32900 mgccnv 32925 ordtcnvNEW 33910 ordtrest2NEW 33913 xrge0iifiso 33925 erdszelem9 35186 coepr 35740 dffr5 35741 dfso2 35742 cnvco1 35746 cnvco2 35747 pocnv 35750 txpss3v 35866 brtxp 35868 brpprod3b 35875 idsset 35878 fixcnv 35896 brimage 35914 brcup 35927 brcap 35928 dfrecs2 35938 dfrdg4 35939 dfint3 35940 imagesset 35941 brlb 35943 fvline 36132 ellines 36140 trer 36304 poimirlem31 37645 poimir 37647 frinfm 37729 xrnss3v 38354 rencldnfilem 42808 cnvssco 43595 psshepw 43777 dffrege115 43967 frege131 43983 frege133 43985 brpermmodel 44993 lambert0 46888 lamberte 46889 gte-lteh 49715 gt-lth 49716 |
| Copyright terms: Public domain | W3C validator |