| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5846 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3450 class class class wbr 5110 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 |
| This theorem is referenced by: cnvco 5852 dfrn2 5855 dfdm4 5862 cnvsym 6088 cnvsymOLD 6089 cnvsymOLDOLD 6090 intasym 6091 asymref 6092 qfto 6097 dminss 6129 imainss 6130 dminxp 6156 cnvcnv3 6164 cnvpo 6263 cnvso 6264 dffun2 6524 dffun2OLD 6525 dffun2OLDOLD 6526 funcnvsn 6569 funcnv2 6587 fun2cnv 6590 imadif 6603 f1ompt 7086 foeqcnvco 7278 f1eqcocnv 7279 fliftcnv 7289 isocnv2 7309 fsplit 8099 ercnv 8695 ecid 8756 omxpenlem 9047 sbthcl 9069 fimax2g 9240 dfsup2 9402 eqinf 9443 infval 9445 infcllem 9446 wofib 9505 oemapso 9642 cflim2 10223 fin23lem40 10311 isfin1-3 10346 fin12 10373 negiso 12170 dfinfre 12171 infrenegsup 12173 xrinfmss2 13278 trclublem 14968 imasleval 17511 invsym2 17732 oppcsect2 17748 oduprs 18268 odupos 18294 oduposb 18295 odulub 18373 oduglb 18375 posglbdg 18381 gsumcom3 19915 ordtbas2 23085 ordtcnv 23095 ordtrest2 23098 utop2nei 24145 utop3cls 24146 dvlt0 25917 dvcnvrelem1 25929 nomaxmo 27617 ofpreima 32596 funcnvmpt 32598 odutos 32901 tosglblem 32907 mgccnv 32932 ordtcnvNEW 33917 ordtrest2NEW 33920 xrge0iifiso 33932 erdszelem9 35193 coepr 35747 dffr5 35748 dfso2 35749 cnvco1 35753 cnvco2 35754 pocnv 35757 txpss3v 35873 brtxp 35875 brpprod3b 35882 idsset 35885 fixcnv 35903 brimage 35921 brcup 35934 brcap 35935 dfrecs2 35945 dfrdg4 35946 dfint3 35947 imagesset 35948 brlb 35950 fvline 36139 ellines 36147 trer 36311 poimirlem31 37652 poimir 37654 frinfm 37736 xrnss3v 38361 rencldnfilem 42815 cnvssco 43602 psshepw 43784 dffrege115 43974 frege131 43990 frege133 43992 brpermmodel 45000 lambert0 46895 lamberte 46896 gte-lteh 49719 gt-lth 49720 |
| Copyright terms: Public domain | W3C validator |