| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnv | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 13-Aug-1995.) |
| Ref | Expression |
|---|---|
| opelcnv.1 | ⊢ 𝐴 ∈ V |
| opelcnv.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| brcnv | ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opelcnv.1 | . 2 ⊢ 𝐴 ∈ V | |
| 2 | opelcnv.2 | . 2 ⊢ 𝐵 ∈ V | |
| 3 | brcnvg 5834 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnvco 5840 dfrn2 5843 dfdm4 5850 cnvsym 6074 cnvsymOLD 6075 cnvsymOLDOLD 6076 intasym 6077 asymref 6078 qfto 6083 dminss 6115 imainss 6116 dminxp 6142 cnvcnv3 6150 cnvpo 6249 cnvso 6250 dffun2 6510 dffun2OLD 6511 funcnvsn 6551 funcnv2 6569 fun2cnv 6572 imadif 6585 f1ompt 7066 foeqcnvco 7258 f1eqcocnv 7259 fliftcnv 7269 isocnv2 7289 fsplit 8074 ercnv 8670 ecid 8731 omxpenlem 9020 sbthcl 9041 fimax2g 9210 dfsup2 9372 eqinf 9413 infval 9415 infcllem 9416 wofib 9475 oemapso 9614 cflim2 10195 fin23lem40 10283 isfin1-3 10318 fin12 10345 negiso 12142 dfinfre 12143 infrenegsup 12145 xrinfmss2 13250 trclublem 14939 imasleval 17482 invsym2 17707 oppcsect2 17723 oduprs 18243 odupos 18269 oduposb 18270 odulub 18348 oduglb 18350 posglbdg 18356 gsumcom3 19894 ordtbas2 23113 ordtcnv 23123 ordtrest2 23126 utop2nei 24173 utop3cls 24174 dvlt0 25945 dvcnvrelem1 25957 nomaxmo 27645 ofpreima 32641 funcnvmpt 32643 odutos 32942 tosglblem 32948 mgccnv 32973 ordtcnvNEW 33905 ordtrest2NEW 33908 xrge0iifiso 33920 erdszelem9 35181 coepr 35735 dffr5 35736 dfso2 35737 cnvco1 35741 cnvco2 35742 pocnv 35745 txpss3v 35861 brtxp 35863 brpprod3b 35870 idsset 35873 fixcnv 35891 brimage 35909 brcup 35922 brcap 35923 dfrecs2 35933 dfrdg4 35934 dfint3 35935 imagesset 35936 brlb 35938 fvline 36127 ellines 36135 trer 36299 poimirlem31 37640 poimir 37642 frinfm 37724 xrnss3v 38349 rencldnfilem 42803 cnvssco 43590 psshepw 43772 dffrege115 43962 frege131 43978 frege133 43980 brpermmodel 44988 lambert0 46883 lamberte 46884 gte-lteh 49710 gt-lth 49711 |
| Copyright terms: Public domain | W3C validator |