Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvcnv3 | Structured version Visualization version GIF version |
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
cnvcnv3 | ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5597 | . 2 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} | |
2 | vex 3436 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 5791 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
5 | 4 | opabbii 5141 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
6 | 1, 5 | eqtri 2766 | 1 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5074 {copab 5136 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 |
This theorem is referenced by: dfrel4v 6093 |
Copyright terms: Public domain | W3C validator |