| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvcnv3 | Structured version Visualization version GIF version | ||
| Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
| Ref | Expression |
|---|---|
| cnvcnv3 | ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5627 | . 2 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 4 | 2, 3 | brcnv 5825 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
| 5 | 4 | opabbii 5159 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦◡𝑅𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| 6 | 1, 5 | eqtri 2752 | 1 ⊢ ◡◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑥𝑅𝑦} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5092 {copab 5154 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: dfrel4v 6139 |
| Copyright terms: Public domain | W3C validator |