![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvcnv3 | Structured version Visualization version GIF version |
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.) |
Ref | Expression |
---|---|
cnvcnv3 | ⊢ ◡◡𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5681 | . 2 ⊢ ◡◡𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦◡𝑅𝑥} | |
2 | vex 3474 | . . . 4 ⊢ 𝑦 ∈ V | |
3 | vex 3474 | . . . 4 ⊢ 𝑥 ∈ V | |
4 | 2, 3 | brcnv 5880 | . . 3 ⊢ (𝑦◡𝑅𝑥 ↔ 𝑥𝑅𝑦) |
5 | 4 | opabbii 5210 | . 2 ⊢ {⟨𝑥, 𝑦⟩ ∣ 𝑦◡𝑅𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} |
6 | 1, 5 | eqtri 2756 | 1 ⊢ ◡◡𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1534 class class class wbr 5143 {copab 5205 ◡ccnv 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pr 5424 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2706 df-cleq 2720 df-clel 2806 df-rab 3429 df-v 3472 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-br 5144 df-opab 5206 df-cnv 5681 |
This theorem is referenced by: dfrel4v 6189 |
Copyright terms: Public domain | W3C validator |