MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvcnv3 Structured version   Visualization version   GIF version

Theorem cnvcnv3 6091
Description: The set of all ordered pairs in a class is the same as the double converse. (Contributed by Mario Carneiro, 16-Aug-2015.)
Assertion
Ref Expression
cnvcnv3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
Distinct variable group:   𝑥,𝑦,𝑅

Proof of Theorem cnvcnv3
StepHypRef Expression
1 df-cnv 5597 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
2 vex 3436 . . . 4 𝑦 ∈ V
3 vex 3436 . . . 4 𝑥 ∈ V
42, 3brcnv 5791 . . 3 (𝑦𝑅𝑥𝑥𝑅𝑦)
54opabbii 5141 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
61, 5eqtri 2766 1 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑥𝑅𝑦}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539   class class class wbr 5074  {copab 5136  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597
This theorem is referenced by:  dfrel4v  6093
  Copyright terms: Public domain W3C validator