| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5649 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5786 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5110 ◡ccnv 5640 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-ss 3934 df-opab 5173 df-xp 5647 df-rel 5648 df-cnv 5649 |
| This theorem is referenced by: relbrcnvg 6079 eliniseg2 6080 cnvsym 6088 cnvsymOLD 6089 cnvsymOLDOLD 6090 intasym 6091 asymref 6092 cnvopab 6113 cnvopabOLD 6114 cnvdif 6119 dfrel2 6165 cnvcnv 6168 cnvsn0 6186 cnvcnvsn 6195 resdm2 6207 coi2 6239 coires1 6240 cnvssrndm 6247 unidmrn 6255 cnviin 6262 predep 6306 funi 6551 funcnvsn 6569 funcnv2 6587 fcnvres 6740 f1cnvcnv 6768 f1ompt 7086 fliftcnv 7289 cnvexg 7903 cnvf1o 8093 fsplit 8099 reldmtpos 8216 dmtpos 8220 rntpos 8221 dftpos3 8226 dftpos4 8227 tpostpos 8228 tposf12 8233 ercnv 8695 cnvct 9008 omxpenlem 9047 domss2 9106 cnvfi 9146 cnvfiALT 9297 trclublem 14968 relexpaddg 15026 fsumcnv 15746 fsumcom2 15747 fprodcnv 15956 fprodcom2 15957 invsym2 17732 oppcsect2 17748 cnvps 18544 tsrdir 18570 mvdco 19382 gsumcom2 19912 funcnvmpt 32598 fcnvgreu 32604 dfcnv2 32607 gsummpt2co 32995 gsumhashmul 33008 cnvco1 35753 cnvco2 35754 colinrel 36052 trer 36311 releleccnv 38253 eleccnvep 38276 brcnvrabga 38331 cnvresrn 38337 ineccnvmo 38346 elec1cnvxrn2 38390 cnvelrels 38493 dfdisjALTV 38712 dfeldisj5 38720 dfantisymrel4 38760 dfantisymrel5 38761 cnvnonrel 43584 cnvcnvintabd 43596 cnvintabd 43599 cnvssco 43602 clrellem 43618 clcnvlem 43619 cnviun 43646 trrelsuperrel2dg 43667 dffrege115 43974 dmtposss 48868 tposrescnv 48871 tposres3 48873 tposideq 48880 |
| Copyright terms: Public domain | W3C validator |