| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5627 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5763 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5092 ◡ccnv 5618 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-ss 3920 df-opab 5155 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: relbrcnvg 6056 eliniseg2 6057 cnvsym 6063 intasym 6064 asymref 6065 cnvopab 6086 cnvopabOLD 6087 cnvdif 6092 dfrel2 6138 cnvcnv 6141 cnvsn0 6159 cnvcnvsn 6168 resdm2 6180 coi2 6212 coires1 6213 cnvssrndm 6219 unidmrn 6227 cnviin 6234 predep 6278 funi 6514 funcnvsn 6532 funcnv2 6550 fcnvres 6701 f1cnvcnv 6729 f1ompt 7045 fliftcnv 7248 cnvexg 7857 cnvf1o 8044 fsplit 8050 reldmtpos 8167 dmtpos 8171 rntpos 8172 dftpos3 8177 dftpos4 8178 tpostpos 8179 tposf12 8184 ercnv 8646 cnvct 8959 omxpenlem 8995 domss2 9053 cnvfi 9090 cnvfiALT 9229 trclublem 14902 relexpaddg 14960 fsumcnv 15680 fsumcom2 15681 fprodcnv 15890 fprodcom2 15891 invsym2 17670 oppcsect2 17686 cnvps 18484 tsrdir 18510 mvdco 19324 gsumcom2 19854 funcnvmpt 32618 fcnvgreu 32624 dfcnv2 32627 gsummpt2co 33010 gsumhashmul 33023 cnvco1 35752 cnvco2 35753 colinrel 36051 trer 36310 releleccnv 38252 eleccnvep 38275 brcnvrabga 38330 cnvresrn 38336 ineccnvmo 38345 elec1cnvxrn2 38389 cnvelrels 38492 dfdisjALTV 38711 dfeldisj5 38719 dfantisymrel4 38759 dfantisymrel5 38760 cnvnonrel 43581 cnvcnvintabd 43593 cnvintabd 43596 cnvssco 43599 clrellem 43615 clcnvlem 43616 cnviun 43643 trrelsuperrel2dg 43664 dffrege115 43971 dmtposss 48880 tposrescnv 48883 tposres3 48885 tposideq 48892 |
| Copyright terms: Public domain | W3C validator |