Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5597 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabiv 5730 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5074 ◡ccnv 5588 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-opab 5137 df-xp 5595 df-rel 5596 df-cnv 5597 |
This theorem is referenced by: relbrcnvg 6013 eliniseg2 6014 cnvsym 6019 intasym 6020 asymref 6021 cnvopab 6042 cnvdif 6047 dfrel2 6092 cnvcnv 6095 cnvsn0 6113 cnvcnvsn 6122 resdm2 6134 coi2 6167 coires1 6168 cnvssrndm 6174 unidmrn 6182 cnviin 6189 predep 6233 funi 6466 funcnvsn 6484 funcnv2 6502 fcnvres 6651 f1cnvcnv 6680 f1ompt 6985 fliftcnv 7182 cnvexg 7771 cnvf1o 7951 fsplit 7957 fsplitOLD 7958 reldmtpos 8050 dmtpos 8054 rntpos 8055 dftpos3 8060 dftpos4 8061 tpostpos 8062 tposf12 8067 ercnv 8519 cnvct 8824 omxpenlem 8860 domss2 8923 cnvfi 8963 cnvfiALT 9101 trclublem 14706 relexpaddg 14764 fsumcnv 15485 fsumcom2 15486 fprodcnv 15693 fprodcom2 15694 invsym2 17475 oppcsect2 17491 cnvps 18296 tsrdir 18322 mvdco 19053 gsumcom2 19576 funcnvmpt 31004 fcnvgreu 31010 dfcnv2 31013 gsummpt2co 31308 gsumhashmul 31316 cnvco1 33726 cnvco2 33727 colinrel 34359 trer 34505 releleccnv 36396 eleccnvep 36416 brcnvrabga 36477 cnvresrn 36483 ineccnvmo 36489 elec1cnvxrn2 36523 cnvelrels 36613 dfdisjALTV 36824 dfeldisj5 36832 cnvnonrel 41196 cnvcnvintabd 41208 cnvintabd 41211 cnvssco 41214 clrellem 41230 clcnvlem 41231 cnviun 41258 trrelsuperrel2dg 41279 dffrege115 41586 |
Copyright terms: Public domain | W3C validator |