![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5708 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabiv 5844 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5166 ◡ccnv 5699 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 |
This theorem is referenced by: relbrcnvg 6135 eliniseg2 6136 cnvsym 6144 cnvsymOLD 6145 cnvsymOLDOLD 6146 intasym 6147 asymref 6148 cnvopab 6169 cnvopabOLD 6170 cnvdif 6175 dfrel2 6220 cnvcnv 6223 cnvsn0 6241 cnvcnvsn 6250 resdm2 6262 coi2 6294 coires1 6295 cnvssrndm 6302 unidmrn 6310 cnviin 6317 predep 6362 funi 6610 funcnvsn 6628 funcnv2 6646 fcnvres 6798 f1cnvcnv 6826 f1ompt 7145 fliftcnv 7347 cnvexg 7964 cnvf1o 8152 fsplit 8158 reldmtpos 8275 dmtpos 8279 rntpos 8280 dftpos3 8285 dftpos4 8286 tpostpos 8287 tposf12 8292 ercnv 8784 cnvct 9099 omxpenlem 9139 domss2 9202 cnvfi 9243 cnvfiALT 9407 trclublem 15044 relexpaddg 15102 fsumcnv 15821 fsumcom2 15822 fprodcnv 16031 fprodcom2 16032 invsym2 17824 oppcsect2 17840 cnvps 18648 tsrdir 18674 mvdco 19487 gsumcom2 20017 funcnvmpt 32685 fcnvgreu 32691 dfcnv2 32694 gsummpt2co 33031 gsumhashmul 33040 cnvco1 35721 cnvco2 35722 colinrel 36021 trer 36282 releleccnv 38213 eleccnvep 38237 brcnvrabga 38298 cnvresrn 38304 ineccnvmo 38313 elec1cnvxrn2 38353 cnvelrels 38451 dfdisjALTV 38669 dfeldisj5 38677 dfantisymrel4 38717 dfantisymrel5 38718 cnvnonrel 43550 cnvcnvintabd 43562 cnvintabd 43565 cnvssco 43568 clrellem 43584 clcnvlem 43585 cnviun 43612 trrelsuperrel2dg 43633 dffrege115 43940 |
Copyright terms: Public domain | W3C validator |