Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5635 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabiv 5769 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5100 ◡ccnv 5626 Rel wrel 5632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3445 df-in 3912 df-ss 3922 df-opab 5163 df-xp 5633 df-rel 5634 df-cnv 5635 |
This theorem is referenced by: relbrcnvg 6050 eliniseg2 6051 cnvsym 6059 cnvsymOLD 6060 cnvsymOLDOLD 6061 intasym 6062 asymref 6063 cnvopab 6084 cnvdif 6089 dfrel2 6134 cnvcnv 6137 cnvsn0 6155 cnvcnvsn 6164 resdm2 6176 coi2 6208 coires1 6209 cnvssrndm 6216 unidmrn 6224 cnviin 6231 predep 6277 funi 6525 funcnvsn 6543 funcnv2 6561 fcnvres 6711 f1cnvcnv 6740 f1ompt 7050 fliftcnv 7247 cnvexg 7848 cnvf1o 8028 fsplit 8034 reldmtpos 8129 dmtpos 8133 rntpos 8134 dftpos3 8139 dftpos4 8140 tpostpos 8141 tposf12 8146 ercnv 8599 cnvct 8908 omxpenlem 8947 domss2 9010 cnvfi 9054 cnvfiALT 9208 trclublem 14810 relexpaddg 14868 fsumcnv 15589 fsumcom2 15590 fprodcnv 15797 fprodcom2 15798 invsym2 17577 oppcsect2 17593 cnvps 18398 tsrdir 18424 mvdco 19154 gsumcom2 19675 funcnvmpt 31355 fcnvgreu 31361 dfcnv2 31364 gsummpt2co 31659 gsumhashmul 31667 cnvco1 34080 cnvco2 34081 colinrel 34498 trer 34644 releleccnv 36573 eleccnvep 36597 brcnvrabga 36659 cnvresrn 36665 ineccnvmo 36674 elec1cnvxrn2 36715 cnvelrels 36813 dfdisjALTV 37031 dfeldisj5 37039 dfantisymrel4 37079 dfantisymrel5 37080 cnvnonrel 41569 cnvcnvintabd 41581 cnvintabd 41584 cnvssco 41587 clrellem 41603 clcnvlem 41604 cnviun 41631 trrelsuperrel2dg 41652 dffrege115 41959 |
Copyright terms: Public domain | W3C validator |