| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5639 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5775 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 ◡ccnv 5630 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: relbrcnvg 6066 eliniseg2 6067 cnvsym 6074 cnvsymOLD 6075 cnvsymOLDOLD 6076 intasym 6077 asymref 6078 cnvopab 6099 cnvopabOLD 6100 cnvdif 6105 dfrel2 6151 cnvcnv 6154 cnvsn0 6172 cnvcnvsn 6181 resdm2 6193 coi2 6225 coires1 6226 cnvssrndm 6233 unidmrn 6241 cnviin 6248 predep 6292 funi 6533 funcnvsn 6551 funcnv2 6569 fcnvres 6720 f1cnvcnv 6748 f1ompt 7066 fliftcnv 7269 cnvexg 7881 cnvf1o 8068 fsplit 8074 reldmtpos 8191 dmtpos 8195 rntpos 8196 dftpos3 8201 dftpos4 8202 tpostpos 8203 tposf12 8208 ercnv 8670 cnvct 8983 omxpenlem 9020 domss2 9078 cnvfi 9118 cnvfiALT 9267 trclublem 14939 relexpaddg 14997 fsumcnv 15717 fsumcom2 15718 fprodcnv 15927 fprodcom2 15928 invsym2 17707 oppcsect2 17723 cnvps 18521 tsrdir 18547 mvdco 19361 gsumcom2 19891 funcnvmpt 32643 fcnvgreu 32649 dfcnv2 32652 gsummpt2co 33033 gsumhashmul 33046 cnvco1 35741 cnvco2 35742 colinrel 36040 trer 36299 releleccnv 38241 eleccnvep 38264 brcnvrabga 38319 cnvresrn 38325 ineccnvmo 38334 elec1cnvxrn2 38378 cnvelrels 38481 dfdisjALTV 38700 dfeldisj5 38708 dfantisymrel4 38748 dfantisymrel5 38749 cnvnonrel 43572 cnvcnvintabd 43584 cnvintabd 43587 cnvssco 43590 clrellem 43606 clcnvlem 43607 cnviun 43634 trrelsuperrel2dg 43655 dffrege115 43962 dmtposss 48859 tposrescnv 48862 tposres3 48864 tposideq 48871 |
| Copyright terms: Public domain | W3C validator |