![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5458 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabi 5587 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 4968 ◡ccnv 5449 Rel wrel 5455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-opab 5031 df-xp 5456 df-rel 5457 df-cnv 5458 |
This theorem is referenced by: relbrcnvg 5851 eliniseg2 5852 cnvsym 5857 intasym 5858 asymref 5859 cnvopab 5880 cnvdif 5885 dfrel2 5929 cnvcnv 5932 cnvsn0 5949 cnvcnvsn 5958 resdm2 5970 coi2 5998 coires1 5999 cnvssrndm 6004 unidmrn 6012 cnviin 6019 predep 6056 funi 6264 funcnvsn 6281 funcnv2 6299 fcnvres 6431 f1cnvcnv 6459 f1ompt 6745 fliftcnv 6934 cnvexg 7492 cnvf1o 7669 fsplit 7675 reldmtpos 7758 dmtpos 7762 rntpos 7763 dftpos3 7768 dftpos4 7769 tpostpos 7770 tposf12 7775 ercnv 8167 cnvct 8441 omxpenlem 8472 domss2 8530 cnvfi 8659 trclublem 14193 relexpaddg 14250 fsumcnv 14965 fsumcom2 14966 fprodcnv 15174 fprodcom2 15175 invsym2 16866 oppcsect2 16882 cnvps 17655 tsrdir 17681 mvdco 18308 gsumcom2 18819 funcnvmpt 30098 fcnvgreu 30104 dfcnv2 30108 gsummpt2co 30491 cnvco1 32605 cnvco2 32606 colinrel 33129 trer 33275 releleccnv 35071 eleccnvep 35091 brcnvrabga 35152 cnvresrn 35158 ineccnvmo 35164 elec1cnvxrn2 35197 cnvelrels 35287 dfdisjALTV 35498 dfeldisj5 35506 cnvnonrel 39454 cnvcnvintabd 39466 cnvintabd 39469 cnvssco 39472 clrellem 39488 clcnvlem 39489 cnviun 39501 trrelsuperrel2dg 39522 dffrege115 39830 |
Copyright terms: Public domain | W3C validator |