Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5588 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabiv 5719 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5070 ◡ccnv 5579 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: relbrcnvg 6002 eliniseg2 6003 cnvsym 6008 intasym 6009 asymref 6010 cnvopab 6031 cnvdif 6036 dfrel2 6081 cnvcnv 6084 cnvsn0 6102 cnvcnvsn 6111 resdm2 6123 coi2 6156 coires1 6157 cnvssrndm 6163 unidmrn 6171 cnviin 6178 predep 6222 funi 6450 funcnvsn 6468 funcnv2 6486 fcnvres 6635 f1cnvcnv 6664 f1ompt 6967 fliftcnv 7162 cnvexg 7745 cnvf1o 7922 fsplit 7928 fsplitOLD 7929 reldmtpos 8021 dmtpos 8025 rntpos 8026 dftpos3 8031 dftpos4 8032 tpostpos 8033 tposf12 8038 ercnv 8477 cnvct 8778 omxpenlem 8813 domss2 8872 cnvfi 8924 cnvfiALT 9031 trclublem 14634 relexpaddg 14692 fsumcnv 15413 fsumcom2 15414 fprodcnv 15621 fprodcom2 15622 invsym2 17392 oppcsect2 17408 cnvps 18211 tsrdir 18237 mvdco 18968 gsumcom2 19491 funcnvmpt 30906 fcnvgreu 30912 dfcnv2 30915 gsummpt2co 31210 gsumhashmul 31218 cnvco1 33632 cnvco2 33633 colinrel 34286 trer 34432 releleccnv 36323 eleccnvep 36343 brcnvrabga 36404 cnvresrn 36410 ineccnvmo 36416 elec1cnvxrn2 36450 cnvelrels 36540 dfdisjALTV 36751 dfeldisj5 36759 cnvnonrel 41085 cnvcnvintabd 41097 cnvintabd 41100 cnvssco 41103 clrellem 41119 clcnvlem 41120 cnviun 41147 trrelsuperrel2dg 41168 dffrege115 41475 |
Copyright terms: Public domain | W3C validator |