| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5639 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5774 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5102 ◡ccnv 5630 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-ss 3928 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 |
| This theorem is referenced by: relbrcnvg 6065 eliniseg2 6066 cnvsym 6073 cnvsymOLD 6074 cnvsymOLDOLD 6075 intasym 6076 asymref 6077 cnvopab 6098 cnvopabOLD 6099 cnvdif 6104 dfrel2 6150 cnvcnv 6153 cnvsn0 6171 cnvcnvsn 6180 resdm2 6192 coi2 6224 coires1 6225 cnvssrndm 6232 unidmrn 6240 cnviin 6247 predep 6291 funi 6532 funcnvsn 6550 funcnv2 6568 fcnvres 6719 f1cnvcnv 6747 f1ompt 7065 fliftcnv 7268 cnvexg 7880 cnvf1o 8067 fsplit 8073 reldmtpos 8190 dmtpos 8194 rntpos 8195 dftpos3 8200 dftpos4 8201 tpostpos 8202 tposf12 8207 ercnv 8669 cnvct 8982 omxpenlem 9019 domss2 9077 cnvfi 9117 cnvfiALT 9266 trclublem 14938 relexpaddg 14996 fsumcnv 15716 fsumcom2 15717 fprodcnv 15926 fprodcom2 15927 invsym2 17706 oppcsect2 17722 cnvps 18520 tsrdir 18546 mvdco 19360 gsumcom2 19890 funcnvmpt 32642 fcnvgreu 32648 dfcnv2 32651 gsummpt2co 33032 gsumhashmul 33045 cnvco1 35740 cnvco2 35741 colinrel 36039 trer 36298 releleccnv 38240 eleccnvep 38263 brcnvrabga 38318 cnvresrn 38324 ineccnvmo 38333 elec1cnvxrn2 38377 cnvelrels 38480 dfdisjALTV 38699 dfeldisj5 38707 dfantisymrel4 38747 dfantisymrel5 38748 cnvnonrel 43571 cnvcnvintabd 43583 cnvintabd 43586 cnvssco 43589 clrellem 43605 clcnvlem 43606 cnviun 43633 trrelsuperrel2dg 43654 dffrege115 43961 dmtposss 48858 tposrescnv 48861 tposres3 48863 tposideq 48870 |
| Copyright terms: Public domain | W3C validator |