| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5622 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5759 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5089 ◡ccnv 5613 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: relbrcnvg 6053 eliniseg2 6054 cnvsym 6060 intasym 6061 asymref 6062 cnvopab 6083 cnvopabOLD 6084 cnvdif 6090 dfrel2 6136 cnvcnv 6139 cnvsn0 6157 cnvcnvsn 6166 resdm2 6178 coi2 6211 coires1 6212 cnvssrndm 6218 unidmrn 6226 cnviin 6233 predep 6277 funi 6513 funcnvsn 6531 funcnv2 6549 fcnvres 6700 f1cnvcnv 6728 f1ompt 7044 fliftcnv 7245 cnvexg 7854 cnvf1o 8041 fsplit 8047 reldmtpos 8164 dmtpos 8168 rntpos 8169 dftpos3 8174 dftpos4 8175 tpostpos 8176 tposf12 8181 ercnv 8643 cnvct 8956 omxpenlem 8991 domss2 9049 cnvfi 9085 cnvfiALT 9223 trclublem 14902 relexpaddg 14960 fsumcnv 15680 fsumcom2 15681 fprodcnv 15890 fprodcom2 15891 invsym2 17670 oppcsect2 17686 cnvps 18484 tsrdir 18510 mvdco 19357 gsumcom2 19887 funcnvmpt 32649 fcnvgreu 32655 dfcnv2 32658 gsummpt2co 33028 gsumhashmul 33041 cnvco1 35803 cnvco2 35804 colinrel 36101 trer 36360 releleccnv 38293 elec1cnvres 38306 eleccnvep 38318 brcnvrabga 38373 cnvresrn 38379 ineccnvmo 38388 elec1cnvxrn2 38443 dfsucmap3 38475 cnvelrels 38587 dfdisjALTV 38810 dfeldisj5 38818 dfantisymrel4 38858 dfantisymrel5 38859 cnvnonrel 43680 cnvcnvintabd 43692 cnvintabd 43695 cnvssco 43698 clrellem 43714 clcnvlem 43715 cnviun 43742 trrelsuperrel2dg 43763 dffrege115 44070 dmtposss 48975 tposrescnv 48978 tposres3 48980 tposideq 48987 |
| Copyright terms: Public domain | W3C validator |