![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version |
Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
relcnv | ⊢ Rel ◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5696 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
2 | 1 | relopabiv 5832 | 1 ⊢ Rel ◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: class class class wbr 5147 ◡ccnv 5687 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1539 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3479 df-ss 3979 df-opab 5210 df-xp 5694 df-rel 5695 df-cnv 5696 |
This theorem is referenced by: relbrcnvg 6125 eliniseg2 6126 cnvsym 6134 cnvsymOLD 6135 cnvsymOLDOLD 6136 intasym 6137 asymref 6138 cnvopab 6159 cnvopabOLD 6160 cnvdif 6165 dfrel2 6210 cnvcnv 6213 cnvsn0 6231 cnvcnvsn 6240 resdm2 6252 coi2 6284 coires1 6285 cnvssrndm 6292 unidmrn 6300 cnviin 6307 predep 6352 funi 6599 funcnvsn 6617 funcnv2 6635 fcnvres 6785 f1cnvcnv 6813 f1ompt 7130 fliftcnv 7330 cnvexg 7946 cnvf1o 8134 fsplit 8140 reldmtpos 8257 dmtpos 8261 rntpos 8262 dftpos3 8267 dftpos4 8268 tpostpos 8269 tposf12 8274 ercnv 8764 cnvct 9072 omxpenlem 9111 domss2 9174 cnvfi 9214 cnvfiALT 9376 trclublem 15030 relexpaddg 15088 fsumcnv 15805 fsumcom2 15806 fprodcnv 16015 fprodcom2 16016 invsym2 17810 oppcsect2 17826 cnvps 18635 tsrdir 18661 mvdco 19477 gsumcom2 20007 funcnvmpt 32683 fcnvgreu 32689 dfcnv2 32692 gsummpt2co 33033 gsumhashmul 33046 cnvco1 35738 cnvco2 35739 colinrel 36038 trer 36298 releleccnv 38238 eleccnvep 38262 brcnvrabga 38323 cnvresrn 38329 ineccnvmo 38338 elec1cnvxrn2 38378 cnvelrels 38476 dfdisjALTV 38694 dfeldisj5 38702 dfantisymrel4 38742 dfantisymrel5 38743 cnvnonrel 43577 cnvcnvintabd 43589 cnvintabd 43592 cnvssco 43595 clrellem 43611 clcnvlem 43612 cnviun 43639 trrelsuperrel2dg 43660 dffrege115 43967 |
Copyright terms: Public domain | W3C validator |