| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > relcnv | Structured version Visualization version GIF version | ||
| Description: A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| relcnv | ⊢ Rel ◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5646 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 2 | 1 | relopabiv 5783 | 1 ⊢ Rel ◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: class class class wbr 5107 ◡ccnv 5637 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-ss 3931 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 |
| This theorem is referenced by: relbrcnvg 6076 eliniseg2 6077 cnvsym 6085 cnvsymOLD 6086 cnvsymOLDOLD 6087 intasym 6088 asymref 6089 cnvopab 6110 cnvopabOLD 6111 cnvdif 6116 dfrel2 6162 cnvcnv 6165 cnvsn0 6183 cnvcnvsn 6192 resdm2 6204 coi2 6236 coires1 6237 cnvssrndm 6244 unidmrn 6252 cnviin 6259 predep 6303 funi 6548 funcnvsn 6566 funcnv2 6584 fcnvres 6737 f1cnvcnv 6765 f1ompt 7083 fliftcnv 7286 cnvexg 7900 cnvf1o 8090 fsplit 8096 reldmtpos 8213 dmtpos 8217 rntpos 8218 dftpos3 8223 dftpos4 8224 tpostpos 8225 tposf12 8230 ercnv 8692 cnvct 9005 omxpenlem 9042 domss2 9100 cnvfi 9140 cnvfiALT 9290 trclublem 14961 relexpaddg 15019 fsumcnv 15739 fsumcom2 15740 fprodcnv 15949 fprodcom2 15950 invsym2 17725 oppcsect2 17741 cnvps 18537 tsrdir 18563 mvdco 19375 gsumcom2 19905 funcnvmpt 32591 fcnvgreu 32597 dfcnv2 32600 gsummpt2co 32988 gsumhashmul 33001 cnvco1 35746 cnvco2 35747 colinrel 36045 trer 36304 releleccnv 38246 eleccnvep 38269 brcnvrabga 38324 cnvresrn 38330 ineccnvmo 38339 elec1cnvxrn2 38383 cnvelrels 38486 dfdisjALTV 38705 dfeldisj5 38713 dfantisymrel4 38753 dfantisymrel5 38754 cnvnonrel 43577 cnvcnvintabd 43589 cnvintabd 43592 cnvssco 43595 clrellem 43611 clcnvlem 43612 cnviun 43639 trrelsuperrel2dg 43660 dffrege115 43967 dmtposss 48864 tposrescnv 48867 tposres3 48869 tposideq 48876 |
| Copyright terms: Public domain | W3C validator |