| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5133 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
| 2 | 1 | ssopab2dv 5489 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 3 | df-cnv 5622 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 4 | df-cnv 5622 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 3983 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3897 class class class wbr 5089 {copab 5151 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ss 3914 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: cnveq 5812 rnss 5878 relcnvtrg 6214 predrelss 6284 funss 6500 funres11 6558 funcnvres 6559 foimacnv 6780 funcnvuni 7862 tposss 8157 vdwnnlem1 16907 structcnvcnv 17064 catcoppccl 18024 cnvps 18484 tsrdir 18510 ustneism 24139 metustsym 24470 metust 24473 pi1xfrcnv 24984 eulerpartlemmf 34388 relcnveq3 38358 elrelscnveq3 38638 disjss 38828 cnvssb 43678 trclubgNEW 43710 clrellem 43714 clcnvlem 43715 cnvrcl0 43717 cnvtrcl0 43718 cnvtrrel 43762 relexpaddss 43810 |
| Copyright terms: Public domain | W3C validator |