| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5146 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
| 2 | 1 | ssopab2dv 5506 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 3 | df-cnv 5639 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 4 | df-cnv 5639 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 3997 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3911 class class class wbr 5102 {copab 5164 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3928 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: cnveq 5828 rnss 5893 relcnvtrg 6228 predrelss 6299 funss 6520 funres11 6578 funcnvres 6579 foimacnv 6800 funcnvuni 7889 tposss 8184 vdwnnlem1 16944 structcnvcnv 17101 catcoppccl 18061 cnvps 18521 tsrdir 18547 ustneism 24146 metustsym 24478 metust 24481 pi1xfrcnv 24992 eulerpartlemmf 34361 relcnveq3 38304 elrelscnveq3 38477 disjss 38718 cnvssb 43570 trclubgNEW 43602 clrellem 43606 clcnvlem 43607 cnvrcl0 43609 cnvtrcl0 43610 cnvtrrel 43654 relexpaddss 43702 |
| Copyright terms: Public domain | W3C validator |