MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5770
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5114 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5457 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5588 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5588 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 3962 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3883   class class class wbr 5070  {copab 5132  ccnv 5579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-v 3424  df-in 3890  df-ss 3900  df-br 5071  df-opab 5133  df-cnv 5588
This theorem is referenced by:  cnveq  5771  rnss  5837  relcnvtrg  6159  funss  6437  funres11  6495  funcnvres  6496  foimacnv  6717  funcnvuni  7752  tposss  8014  vdwnnlem1  16624  structcnvcnv  16782  catcoppccl  17748  catcoppcclOLD  17749  cnvps  18211  tsrdir  18237  ustneism  23283  metustsym  23617  metust  23620  pi1xfrcnv  24126  eulerpartlemmf  32242  relcnveq3  36383  elrelscnveq3  36536  disjss  36769  cnvssb  41083  trclubgNEW  41115  clrellem  41119  clcnvlem  41120  cnvrcl0  41122  cnvtrcl0  41123  cnvtrrel  41167  relexpaddss  41215
  Copyright terms: Public domain W3C validator