MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5815
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5136 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5494 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5627 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5627 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 3989 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3903   class class class wbr 5092  {copab 5154  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3920  df-br 5093  df-opab 5155  df-cnv 5627
This theorem is referenced by:  cnveq  5816  rnss  5881  relcnvtrg  6215  predrelss  6285  funss  6501  funres11  6559  funcnvres  6560  foimacnv  6781  funcnvuni  7865  tposss  8160  vdwnnlem1  16907  structcnvcnv  17064  catcoppccl  18024  cnvps  18484  tsrdir  18510  ustneism  24109  metustsym  24441  metust  24444  pi1xfrcnv  24955  eulerpartlemmf  34359  relcnveq3  38315  elrelscnveq3  38488  disjss  38729  cnvssb  43579  trclubgNEW  43611  clrellem  43615  clcnvlem  43616  cnvrcl0  43618  cnvtrcl0  43619  cnvtrrel  43663  relexpaddss  43711
  Copyright terms: Public domain W3C validator