Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5114 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
2 | 1 | ssopab2dv 5457 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
3 | df-cnv 5588 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
4 | df-cnv 5588 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
5 | 2, 3, 4 | 3sstr4g 3962 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3883 class class class wbr 5070 {copab 5132 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-in 3890 df-ss 3900 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: cnveq 5771 rnss 5837 relcnvtrg 6159 funss 6437 funres11 6495 funcnvres 6496 foimacnv 6717 funcnvuni 7752 tposss 8014 vdwnnlem1 16624 structcnvcnv 16782 catcoppccl 17748 catcoppcclOLD 17749 cnvps 18211 tsrdir 18237 ustneism 23283 metustsym 23617 metust 23620 pi1xfrcnv 24126 eulerpartlemmf 32242 relcnveq3 36383 elrelscnveq3 36536 disjss 36769 cnvssb 41083 trclubgNEW 41115 clrellem 41119 clcnvlem 41120 cnvrcl0 41122 cnvtrcl0 41123 cnvtrrel 41167 relexpaddss 41215 |
Copyright terms: Public domain | W3C validator |