| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5136 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
| 2 | 1 | ssopab2dv 5494 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 3 | df-cnv 5627 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 4 | df-cnv 5627 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 3989 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3903 class class class wbr 5092 {copab 5154 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ss 3920 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: cnveq 5816 rnss 5881 relcnvtrg 6215 predrelss 6285 funss 6501 funres11 6559 funcnvres 6560 foimacnv 6781 funcnvuni 7865 tposss 8160 vdwnnlem1 16907 structcnvcnv 17064 catcoppccl 18024 cnvps 18484 tsrdir 18510 ustneism 24109 metustsym 24441 metust 24444 pi1xfrcnv 24955 eulerpartlemmf 34359 relcnveq3 38315 elrelscnveq3 38488 disjss 38729 cnvssb 43579 trclubgNEW 43611 clrellem 43615 clcnvlem 43616 cnvrcl0 43618 cnvtrcl0 43619 cnvtrrel 43663 relexpaddss 43711 |
| Copyright terms: Public domain | W3C validator |