MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5836
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5151 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5511 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5646 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5646 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 4000 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3914   class class class wbr 5107  {copab 5169  ccnv 5637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3931  df-br 5108  df-opab 5170  df-cnv 5646
This theorem is referenced by:  cnveq  5837  rnss  5903  relcnvtrg  6239  predrelss  6310  funss  6535  funres11  6593  funcnvres  6594  foimacnv  6817  funcnvuni  7908  tposss  8206  vdwnnlem1  16966  structcnvcnv  17123  catcoppccl  18079  cnvps  18537  tsrdir  18563  ustneism  24111  metustsym  24443  metust  24446  pi1xfrcnv  24957  eulerpartlemmf  34366  relcnveq3  38309  elrelscnveq3  38482  disjss  38723  cnvssb  43575  trclubgNEW  43607  clrellem  43611  clcnvlem  43612  cnvrcl0  43614  cnvtrcl0  43615  cnvtrrel  43659  relexpaddss  43707
  Copyright terms: Public domain W3C validator