MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5811
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5133 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5489 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5622 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5622 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 3983 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3897   class class class wbr 5089  {copab 5151  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ss 3914  df-br 5090  df-opab 5152  df-cnv 5622
This theorem is referenced by:  cnveq  5812  rnss  5878  relcnvtrg  6214  predrelss  6284  funss  6500  funres11  6558  funcnvres  6559  foimacnv  6780  funcnvuni  7862  tposss  8157  vdwnnlem1  16907  structcnvcnv  17064  catcoppccl  18024  cnvps  18484  tsrdir  18510  ustneism  24139  metustsym  24470  metust  24473  pi1xfrcnv  24984  eulerpartlemmf  34388  relcnveq3  38358  elrelscnveq3  38638  disjss  38828  cnvssb  43678  trclubgNEW  43710  clrellem  43714  clcnvlem  43715  cnvrcl0  43717  cnvtrcl0  43718  cnvtrrel  43762  relexpaddss  43810
  Copyright terms: Public domain W3C validator