| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version | ||
| Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssbr 5163 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
| 2 | 1 | ssopab2dv 5526 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 3 | df-cnv 5662 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 4 | df-cnv 5662 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 5 | 2, 3, 4 | 3sstr4g 4012 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ⊆ wss 3926 class class class wbr 5119 {copab 5181 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ss 3943 df-br 5120 df-opab 5182 df-cnv 5662 |
| This theorem is referenced by: cnveq 5853 rnss 5919 relcnvtrg 6255 predrelss 6326 funss 6555 funres11 6613 funcnvres 6614 foimacnv 6835 funcnvuni 7928 tposss 8226 vdwnnlem1 17015 structcnvcnv 17172 catcoppccl 18130 cnvps 18588 tsrdir 18614 ustneism 24162 metustsym 24494 metust 24497 pi1xfrcnv 25008 eulerpartlemmf 34407 relcnveq3 38339 elrelscnveq3 38509 disjss 38749 cnvssb 43610 trclubgNEW 43642 clrellem 43646 clcnvlem 43647 cnvrcl0 43649 cnvtrcl0 43650 cnvtrrel 43694 relexpaddss 43742 |
| Copyright terms: Public domain | W3C validator |