![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvss | Structured version Visualization version GIF version |
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.) |
Ref | Expression |
---|---|
cnvss | ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbr 5210 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (𝑦𝐴𝑥 → 𝑦𝐵𝑥)) | |
2 | 1 | ssopab2dv 5570 | . 2 ⊢ (𝐴 ⊆ 𝐵 → {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ⊆ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
3 | df-cnv 5708 | . 2 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
4 | df-cnv 5708 | . 2 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
5 | 2, 3, 4 | 3sstr4g 4054 | 1 ⊢ (𝐴 ⊆ 𝐵 → ◡𝐴 ⊆ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ⊆ wss 3976 class class class wbr 5166 {copab 5228 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ss 3993 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: cnveq 5898 rnss 5964 relcnvtrg 6297 predrelss 6369 funss 6597 funres11 6655 funcnvres 6656 foimacnv 6879 funcnvuni 7972 tposss 8268 vdwnnlem1 17042 structcnvcnv 17200 catcoppccl 18184 catcoppcclOLD 18185 cnvps 18648 tsrdir 18674 ustneism 24253 metustsym 24589 metust 24592 pi1xfrcnv 25109 eulerpartlemmf 34340 relcnveq3 38277 elrelscnveq3 38447 disjss 38687 cnvssb 43548 trclubgNEW 43580 clrellem 43584 clcnvlem 43585 cnvrcl0 43587 cnvtrcl0 43588 cnvtrrel 43632 relexpaddss 43680 |
Copyright terms: Public domain | W3C validator |