MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5826
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5146 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5506 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5639 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5639 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 3997 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3911   class class class wbr 5102  {copab 5164  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ss 3928  df-br 5103  df-opab 5165  df-cnv 5639
This theorem is referenced by:  cnveq  5827  rnss  5892  relcnvtrg  6227  predrelss  6298  funss  6519  funres11  6577  funcnvres  6578  foimacnv  6799  funcnvuni  7888  tposss  8183  vdwnnlem1  16943  structcnvcnv  17100  catcoppccl  18060  cnvps  18520  tsrdir  18546  ustneism  24145  metustsym  24477  metust  24480  pi1xfrcnv  24991  eulerpartlemmf  34360  relcnveq3  38303  elrelscnveq3  38476  disjss  38717  cnvssb  43569  trclubgNEW  43601  clrellem  43605  clcnvlem  43606  cnvrcl0  43608  cnvtrcl0  43609  cnvtrrel  43653  relexpaddss  43701
  Copyright terms: Public domain W3C validator