MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvss Structured version   Visualization version   GIF version

Theorem cnvss 5781
Description: Subset theorem for converse. (Contributed by NM, 22-Mar-1998.) (Proof shortened by Kyle Wyonch, 27-Apr-2021.)
Assertion
Ref Expression
cnvss (𝐴𝐵𝐴𝐵)

Proof of Theorem cnvss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssbr 5118 . . 3 (𝐴𝐵 → (𝑦𝐴𝑥𝑦𝐵𝑥))
21ssopab2dv 5464 . 2 (𝐴𝐵 → {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥})
3 df-cnv 5597 . 2 𝐴 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐴𝑥}
4 df-cnv 5597 . 2 𝐵 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝐵𝑥}
52, 3, 43sstr4g 3966 1 (𝐴𝐵𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wss 3887   class class class wbr 5074  {copab 5136  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-in 3894  df-ss 3904  df-br 5075  df-opab 5137  df-cnv 5597
This theorem is referenced by:  cnveq  5782  rnss  5848  relcnvtrg  6170  predrelss  6240  funss  6453  funres11  6511  funcnvres  6512  foimacnv  6733  funcnvuni  7778  tposss  8043  vdwnnlem1  16696  structcnvcnv  16854  catcoppccl  17832  catcoppcclOLD  17833  cnvps  18296  tsrdir  18322  ustneism  23375  metustsym  23711  metust  23714  pi1xfrcnv  24220  eulerpartlemmf  32342  relcnveq3  36456  elrelscnveq3  36609  disjss  36842  cnvssb  41194  trclubgNEW  41226  clrellem  41230  clcnvlem  41231  cnvrcl0  41233  cnvtrcl0  41234  cnvtrrel  41278  relexpaddss  41326
  Copyright terms: Public domain W3C validator