MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-cnv Structured version   Visualization version   GIF version

Theorem ex-cnv 30416
Description: Example for df-cnv 5639. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-cnv {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}

Proof of Theorem ex-cnv
StepHypRef Expression
1 cnvun 6103 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
2 2nn 12235 . . . . . 6 2 ∈ ℕ
32elexi 3467 . . . . 5 2 ∈ V
4 6nn 12251 . . . . . 6 6 ∈ ℕ
54elexi 3467 . . . . 5 6 ∈ V
63, 5cnvsn 6187 . . . 4 {⟨2, 6⟩} = {⟨6, 2⟩}
7 3nn 12241 . . . . . 6 3 ∈ ℕ
87elexi 3467 . . . . 5 3 ∈ V
9 9nn 12260 . . . . . 6 9 ∈ ℕ
109elexi 3467 . . . . 5 9 ∈ V
118, 10cnvsn 6187 . . . 4 {⟨3, 9⟩} = {⟨9, 3⟩}
126, 11uneq12i 4125 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
131, 12eqtri 2752 . 2 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
14 df-pr 4588 . . 3 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
1514cnveqi 5828 . 2 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
16 df-pr 4588 . 2 {⟨6, 2⟩, ⟨9, 3⟩} = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
1713, 15, 163eqtr4i 2762 1 {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3909  {csn 4585  {cpr 4587  cop 4591  ccnv 5630  cn 12162  2c2 12217  3c3 12218  6c6 12221  9c9 12224
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691  ax-1cn 11102
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator