| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-cnv | Structured version Visualization version GIF version | ||
| Description: Example for df-cnv 5646. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-cnv | ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6115 | . . 3 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) | |
| 2 | 2nn 12259 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 3 | 2 | elexi 3470 | . . . . 5 ⊢ 2 ∈ V |
| 4 | 6nn 12275 | . . . . . 6 ⊢ 6 ∈ ℕ | |
| 5 | 4 | elexi 3470 | . . . . 5 ⊢ 6 ∈ V |
| 6 | 3, 5 | cnvsn 6199 | . . . 4 ⊢ ◡{〈2, 6〉} = {〈6, 2〉} |
| 7 | 3nn 12265 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 8 | 7 | elexi 3470 | . . . . 5 ⊢ 3 ∈ V |
| 9 | 9nn 12284 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 10 | 9 | elexi 3470 | . . . . 5 ⊢ 9 ∈ V |
| 11 | 8, 10 | cnvsn 6199 | . . . 4 ⊢ ◡{〈3, 9〉} = {〈9, 3〉} |
| 12 | 6, 11 | uneq12i 4129 | . . 3 ⊢ (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
| 13 | 1, 12 | eqtri 2752 | . 2 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
| 14 | df-pr 4592 | . . 3 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 15 | 14 | cnveqi 5838 | . 2 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = ◡({〈2, 6〉} ∪ {〈3, 9〉}) |
| 16 | df-pr 4592 | . 2 ⊢ {〈6, 2〉, 〈9, 3〉} = ({〈6, 2〉} ∪ {〈9, 3〉}) | |
| 17 | 13, 15, 16 | 3eqtr4i 2762 | 1 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3912 {csn 4589 {cpr 4591 〈cop 4595 ◡ccnv 5637 ℕcn 12186 2c2 12241 3c3 12242 6c6 12245 9c9 12248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-1cn 11126 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |