MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-cnv Structured version   Visualization version   GIF version

Theorem ex-cnv 27688
Description: Example for df-cnv 5285. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-cnv {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}

Proof of Theorem ex-cnv
StepHypRef Expression
1 cnvun 5721 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
2 2nn 11345 . . . . . 6 2 ∈ ℕ
32elexi 3366 . . . . 5 2 ∈ V
4 6nn 11364 . . . . . 6 6 ∈ ℕ
54elexi 3366 . . . . 5 6 ∈ V
63, 5cnvsn 5803 . . . 4 {⟨2, 6⟩} = {⟨6, 2⟩}
7 3nn 11351 . . . . . 6 3 ∈ ℕ
87elexi 3366 . . . . 5 3 ∈ V
9 9nn 11376 . . . . . 6 9 ∈ ℕ
109elexi 3366 . . . . 5 9 ∈ V
118, 10cnvsn 5803 . . . 4 {⟨3, 9⟩} = {⟨9, 3⟩}
126, 11uneq12i 3927 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
131, 12eqtri 2787 . 2 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
14 df-pr 4337 . . 3 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
1514cnveqi 5465 . 2 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
16 df-pr 4337 . 2 {⟨6, 2⟩, ⟨9, 3⟩} = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
1713, 15, 163eqtr4i 2797 1 {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1652  cun 3730  {csn 4334  {cpr 4336  cop 4340  ccnv 5276  cn 11274  2c2 11327  3c3 11328  6c6 11331  9c9 11334
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-1cn 10247
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-ral 3060  df-rex 3061  df-reu 3062  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-ov 6845  df-om 7264  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator