MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ex-cnv Structured version   Visualization version   GIF version

Theorem ex-cnv 30260
Description: Example for df-cnv 5686. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.)
Assertion
Ref Expression
ex-cnv {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}

Proof of Theorem ex-cnv
StepHypRef Expression
1 cnvun 6147 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
2 2nn 12316 . . . . . 6 2 ∈ ℕ
32elexi 3491 . . . . 5 2 ∈ V
4 6nn 12332 . . . . . 6 6 ∈ ℕ
54elexi 3491 . . . . 5 6 ∈ V
63, 5cnvsn 6230 . . . 4 {⟨2, 6⟩} = {⟨6, 2⟩}
7 3nn 12322 . . . . . 6 3 ∈ ℕ
87elexi 3491 . . . . 5 3 ∈ V
9 9nn 12341 . . . . . 6 9 ∈ ℕ
109elexi 3491 . . . . 5 9 ∈ V
118, 10cnvsn 6230 . . . 4 {⟨3, 9⟩} = {⟨9, 3⟩}
126, 11uneq12i 4160 . . 3 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
131, 12eqtri 2756 . 2 ({⟨2, 6⟩} ∪ {⟨3, 9⟩}) = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
14 df-pr 4632 . . 3 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
1514cnveqi 5877 . 2 {⟨2, 6⟩, ⟨3, 9⟩} = ({⟨2, 6⟩} ∪ {⟨3, 9⟩})
16 df-pr 4632 . 2 {⟨6, 2⟩, ⟨9, 3⟩} = ({⟨6, 2⟩} ∪ {⟨9, 3⟩})
1713, 15, 163eqtr4i 2766 1 {⟨2, 6⟩, ⟨3, 9⟩} = {⟨6, 2⟩, ⟨9, 3⟩}
Colors of variables: wff setvar class
Syntax hints:   = wceq 1534  cun 3945  {csn 4629  {cpr 4631  cop 4635  ccnv 5677  cn 12243  2c2 12298  3c3 12299  6c6 12302  9c9 12305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740  ax-1cn 11197
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-ov 7423  df-om 7871  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-nn 12244  df-2 12306  df-3 12307  df-4 12308  df-5 12309  df-6 12310  df-7 12311  df-8 12312  df-9 12313
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator