Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-cnv | Structured version Visualization version GIF version |
Description: Example for df-cnv 5593. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-cnv | ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 6040 | . . 3 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) | |
2 | 2nn 12034 | . . . . . 6 ⊢ 2 ∈ ℕ | |
3 | 2 | elexi 3449 | . . . . 5 ⊢ 2 ∈ V |
4 | 6nn 12050 | . . . . . 6 ⊢ 6 ∈ ℕ | |
5 | 4 | elexi 3449 | . . . . 5 ⊢ 6 ∈ V |
6 | 3, 5 | cnvsn 6123 | . . . 4 ⊢ ◡{〈2, 6〉} = {〈6, 2〉} |
7 | 3nn 12040 | . . . . . 6 ⊢ 3 ∈ ℕ | |
8 | 7 | elexi 3449 | . . . . 5 ⊢ 3 ∈ V |
9 | 9nn 12059 | . . . . . 6 ⊢ 9 ∈ ℕ | |
10 | 9 | elexi 3449 | . . . . 5 ⊢ 9 ∈ V |
11 | 8, 10 | cnvsn 6123 | . . . 4 ⊢ ◡{〈3, 9〉} = {〈9, 3〉} |
12 | 6, 11 | uneq12i 4095 | . . 3 ⊢ (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
13 | 1, 12 | eqtri 2766 | . 2 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
14 | df-pr 4565 | . . 3 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
15 | 14 | cnveqi 5777 | . 2 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = ◡({〈2, 6〉} ∪ {〈3, 9〉}) |
16 | df-pr 4565 | . 2 ⊢ {〈6, 2〉, 〈9, 3〉} = ({〈6, 2〉} ∪ {〈9, 3〉}) | |
17 | 13, 15, 16 | 3eqtr4i 2776 | 1 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 {csn 4562 {cpr 4564 〈cop 4568 ◡ccnv 5584 ℕcn 11961 2c2 12016 3c3 12017 6c6 12020 9c9 12023 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5222 ax-nul 5229 ax-pr 5351 ax-un 7579 ax-1cn 10917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3432 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4258 df-if 4461 df-pw 4536 df-sn 4563 df-pr 4565 df-op 4569 df-uni 4841 df-iun 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5485 df-eprel 5491 df-po 5499 df-so 5500 df-fr 5540 df-we 5542 df-xp 5591 df-rel 5592 df-cnv 5593 df-co 5594 df-dm 5595 df-rn 5596 df-res 5597 df-ima 5598 df-pred 6196 df-ord 6263 df-on 6264 df-lim 6265 df-suc 6266 df-iota 6385 df-fun 6429 df-fn 6430 df-f 6431 df-f1 6432 df-fo 6433 df-f1o 6434 df-fv 6435 df-ov 7271 df-om 7704 df-2nd 7822 df-frecs 8085 df-wrecs 8116 df-recs 8190 df-rdg 8229 df-nn 11962 df-2 12024 df-3 12025 df-4 12026 df-5 12027 df-6 12028 df-7 12029 df-8 12030 df-9 12031 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |