| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ex-cnv | Structured version Visualization version GIF version | ||
| Description: Example for df-cnv 5639. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
| Ref | Expression |
|---|---|
| ex-cnv | ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvun 6103 | . . 3 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) | |
| 2 | 2nn 12235 | . . . . . 6 ⊢ 2 ∈ ℕ | |
| 3 | 2 | elexi 3467 | . . . . 5 ⊢ 2 ∈ V |
| 4 | 6nn 12251 | . . . . . 6 ⊢ 6 ∈ ℕ | |
| 5 | 4 | elexi 3467 | . . . . 5 ⊢ 6 ∈ V |
| 6 | 3, 5 | cnvsn 6187 | . . . 4 ⊢ ◡{〈2, 6〉} = {〈6, 2〉} |
| 7 | 3nn 12241 | . . . . . 6 ⊢ 3 ∈ ℕ | |
| 8 | 7 | elexi 3467 | . . . . 5 ⊢ 3 ∈ V |
| 9 | 9nn 12260 | . . . . . 6 ⊢ 9 ∈ ℕ | |
| 10 | 9 | elexi 3467 | . . . . 5 ⊢ 9 ∈ V |
| 11 | 8, 10 | cnvsn 6187 | . . . 4 ⊢ ◡{〈3, 9〉} = {〈9, 3〉} |
| 12 | 6, 11 | uneq12i 4125 | . . 3 ⊢ (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
| 13 | 1, 12 | eqtri 2752 | . 2 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
| 14 | df-pr 4588 | . . 3 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
| 15 | 14 | cnveqi 5828 | . 2 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = ◡({〈2, 6〉} ∪ {〈3, 9〉}) |
| 16 | df-pr 4588 | . 2 ⊢ {〈6, 2〉, 〈9, 3〉} = ({〈6, 2〉} ∪ {〈9, 3〉}) | |
| 17 | 13, 15, 16 | 3eqtr4i 2762 | 1 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 {csn 4585 {cpr 4587 〈cop 4591 ◡ccnv 5630 ℕcn 12162 2c2 12217 3c3 12218 6c6 12221 9c9 12224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 ax-1cn 11102 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |