Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ex-cnv | Structured version Visualization version GIF version |
Description: Example for df-cnv 5597. Example by David A. Wheeler. (Contributed by Mario Carneiro, 6-May-2015.) |
Ref | Expression |
---|---|
ex-cnv | ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvun 6046 | . . 3 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) | |
2 | 2nn 12046 | . . . . . 6 ⊢ 2 ∈ ℕ | |
3 | 2 | elexi 3451 | . . . . 5 ⊢ 2 ∈ V |
4 | 6nn 12062 | . . . . . 6 ⊢ 6 ∈ ℕ | |
5 | 4 | elexi 3451 | . . . . 5 ⊢ 6 ∈ V |
6 | 3, 5 | cnvsn 6129 | . . . 4 ⊢ ◡{〈2, 6〉} = {〈6, 2〉} |
7 | 3nn 12052 | . . . . . 6 ⊢ 3 ∈ ℕ | |
8 | 7 | elexi 3451 | . . . . 5 ⊢ 3 ∈ V |
9 | 9nn 12071 | . . . . . 6 ⊢ 9 ∈ ℕ | |
10 | 9 | elexi 3451 | . . . . 5 ⊢ 9 ∈ V |
11 | 8, 10 | cnvsn 6129 | . . . 4 ⊢ ◡{〈3, 9〉} = {〈9, 3〉} |
12 | 6, 11 | uneq12i 4095 | . . 3 ⊢ (◡{〈2, 6〉} ∪ ◡{〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
13 | 1, 12 | eqtri 2766 | . 2 ⊢ ◡({〈2, 6〉} ∪ {〈3, 9〉}) = ({〈6, 2〉} ∪ {〈9, 3〉}) |
14 | df-pr 4564 | . . 3 ⊢ {〈2, 6〉, 〈3, 9〉} = ({〈2, 6〉} ∪ {〈3, 9〉}) | |
15 | 14 | cnveqi 5783 | . 2 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = ◡({〈2, 6〉} ∪ {〈3, 9〉}) |
16 | df-pr 4564 | . 2 ⊢ {〈6, 2〉, 〈9, 3〉} = ({〈6, 2〉} ∪ {〈9, 3〉}) | |
17 | 13, 15, 16 | 3eqtr4i 2776 | 1 ⊢ ◡{〈2, 6〉, 〈3, 9〉} = {〈6, 2〉, 〈9, 3〉} |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∪ cun 3885 {csn 4561 {cpr 4563 〈cop 4567 ◡ccnv 5588 ℕcn 11973 2c2 12028 3c3 12029 6c6 12032 9c9 12035 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 ax-1cn 10929 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |