| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5251, ax-nul 5261, ax-pr 5387. (Revised by KP, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5156 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
| 2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 3 | 2 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 4 | 3 | nex 1800 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 5 | df-cnv 5646 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
| 6 | df-opab 5170 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
| 8 | 7 | eqabri 2871 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
| 10 | 9 | nel0 4317 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∅c0 4296 〈cop 4595 class class class wbr 5107 {copab 5169 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3917 df-nul 4297 df-br 5108 df-opab 5170 df-cnv 5646 |
| This theorem is referenced by: xp0 6131 cnveq0 6170 co01 6234 funcnv0 6582 f1o00 6835 tpos0 8235 cnvfi 9140 oduleval 18250 ust0 24107 nghmfval 24610 isnghm 24611 1pthdlem1 30064 mptiffisupp 32616 tocycf 33074 tocyc01 33075 mthmval 35562 resnonrel 43581 cononrel1 43583 cononrel2 43584 cnvrcl0 43614 0cnf 45875 |
| Copyright terms: Public domain | W3C validator |