![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5317, ax-nul 5324, ax-pr 5447. (Revised by KP, 25-Oct-2021.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5215 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
3 | 2 | nex 1798 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
4 | 3 | nex 1798 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
5 | df-cnv 5708 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
6 | df-opab 5229 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
7 | 5, 6 | eqtri 2768 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
8 | 7 | eqabri 2888 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
10 | 9 | nel0 4377 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 {cab 2717 ∅c0 4352 〈cop 4654 class class class wbr 5166 {copab 5228 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-dif 3979 df-nul 4353 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: xp0 6189 cnveq0 6228 co01 6292 funcnv0 6644 f1o00 6897 tpos0 8297 cnvfi 9243 oduleval 18359 ust0 24249 nghmfval 24764 isnghm 24765 1pthdlem1 30167 mptiffisupp 32705 tocycf 33110 tocyc01 33111 mthmval 35543 resnonrel 43554 cononrel1 43556 cononrel2 43557 cnvrcl0 43587 0cnf 45798 |
Copyright terms: Public domain | W3C validator |