| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5246, ax-nul 5256, ax-pr 5382. (Revised by KP, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5151 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
| 2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 3 | 2 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 4 | 3 | nex 1800 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 5 | df-cnv 5639 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
| 6 | df-opab 5165 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
| 7 | 5, 6 | eqtri 2752 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
| 8 | 7 | eqabri 2871 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
| 10 | 9 | nel0 4313 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2707 ∅c0 4292 〈cop 4591 class class class wbr 5102 {copab 5164 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-dif 3914 df-nul 4293 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: xp0 6119 cnveq0 6158 co01 6222 funcnv0 6566 f1o00 6817 tpos0 8212 cnvfi 9117 oduleval 18230 ust0 24140 nghmfval 24643 isnghm 24644 1pthdlem1 30114 mptiffisupp 32666 tocycf 33089 tocyc01 33090 mthmval 35555 resnonrel 43574 cononrel1 43576 cononrel2 43577 cnvrcl0 43607 0cnf 45868 |
| Copyright terms: Public domain | W3C validator |