MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnv0 Structured version   Visualization version   GIF version

Theorem cnv0 6044
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5223, ax-nul 5230, ax-pr 5352. (Revised by KP, 25-Oct-2021.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5123 . . . . . 6 ¬ 𝑦𝑧
21intnan 487 . . . . 5 ¬ (𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
32nex 1803 . . . 4 ¬ ∃𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
43nex 1803 . . 3 ¬ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
5 df-cnv 5597 . . . . 5 ∅ = {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧}
6 df-opab 5137 . . . . 5 {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧} = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
75, 6eqtri 2766 . . . 4 ∅ = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
87abeq2i 2875 . . 3 (𝑥∅ ↔ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧))
94, 8mtbir 323 . 2 ¬ 𝑥
109nel0 4284 1 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  {cab 2715  c0 4256  cop 4567   class class class wbr 5074  {copab 5136  ccnv 5588
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-dif 3890  df-nul 4257  df-br 5075  df-opab 5137  df-cnv 5597
This theorem is referenced by:  xp0  6061  cnveq0  6100  co01  6165  funcnv0  6500  f1o00  6751  tpos0  8072  cnvfi  8963  oduleval  18007  ust0  23371  nghmfval  23886  isnghm  23887  1pthdlem1  28499  tocycf  31384  tocyc01  31385  mthmval  33537  resnonrel  41200  cononrel1  41202  cononrel2  41203  cnvrcl0  41233  0cnf  43418
  Copyright terms: Public domain W3C validator