| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5271, ax-nul 5281, ax-pr 5407. (Revised by KP, 25-Oct-2021.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5173 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
| 2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 3 | 2 | nex 1800 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 4 | 3 | nex 1800 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 5 | df-cnv 5667 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
| 6 | df-opab 5187 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
| 7 | 5, 6 | eqtri 2759 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
| 8 | 7 | eqabri 2879 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
| 10 | 9 | nel0 4334 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2714 ∅c0 4313 〈cop 4612 class class class wbr 5124 {copab 5186 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-dif 3934 df-nul 4314 df-br 5125 df-opab 5187 df-cnv 5667 |
| This theorem is referenced by: xp0 6152 cnveq0 6191 co01 6255 funcnv0 6607 f1o00 6858 tpos0 8260 cnvfi 9195 oduleval 18306 ust0 24163 nghmfval 24666 isnghm 24667 1pthdlem1 30121 mptiffisupp 32675 tocycf 33133 tocyc01 33134 mthmval 35602 resnonrel 43583 cononrel1 43585 cononrel2 43586 cnvrcl0 43616 0cnf 45873 |
| Copyright terms: Public domain | W3C validator |