Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5218, ax-nul 5225, ax-pr 5347. (Revised by KP, 25-Oct-2021.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5119 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
3 | 2 | nex 1804 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
4 | 3 | nex 1804 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
5 | df-cnv 5588 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
6 | df-opab 5133 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
8 | 7 | abeq2i 2874 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
9 | 4, 8 | mtbir 322 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
10 | 9 | nel0 4281 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ∅c0 4253 〈cop 4564 class class class wbr 5070 {copab 5132 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-dif 3886 df-nul 4254 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: xp0 6050 cnveq0 6089 co01 6154 funcnv0 6484 f1o00 6734 tpos0 8043 cnvfi 8924 oduleval 17923 ust0 23279 nghmfval 23792 isnghm 23793 1pthdlem1 28400 tocycf 31286 tocyc01 31287 mthmval 33437 resnonrel 41089 cononrel1 41091 cononrel2 41092 cnvrcl0 41122 0cnf 43308 |
Copyright terms: Public domain | W3C validator |