| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version | ||
| Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5232, ax-nul 5242, ax-pr 5368. (Revised by KP, 25-Oct-2021.) Avoid ax-12 2180. (Revised by TM, 31-Jan-2026.) |
| Ref | Expression |
|---|---|
| cnv0 | ⊢ ◡∅ = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | br0 5138 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
| 2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 3 | 2 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 4 | 3 | nex 1801 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
| 5 | df-cnv 5622 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
| 6 | 5 | eleq2i 2823 | . . . 4 ⊢ (𝑥 ∈ ◡∅ ↔ 𝑥 ∈ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧}) |
| 7 | elopabw 5464 | . . . . 5 ⊢ (𝑥 ∈ V → (𝑥 ∈ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧))) | |
| 8 | 7 | elv 3441 | . . . 4 ⊢ (𝑥 ∈ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 9 | 6, 8 | bitri 275 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
| 10 | 4, 9 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
| 11 | 10 | nel0 4301 | 1 ⊢ ◡∅ = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 〈cop 4579 class class class wbr 5089 {copab 5151 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-nul 4281 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: xp0OLD 6105 cnveq0 6144 co01 6209 funcnv0 6547 f1o00 6798 tpos0 8186 cnvfi 9085 oduleval 18195 ust0 24135 nghmfval 24637 isnghm 24638 1pthdlem1 30115 mptiffisupp 32674 tocycf 33086 tocyc01 33087 mthmval 35619 resnonrel 43684 cononrel1 43686 cononrel2 43687 cnvrcl0 43717 0cnf 45974 |
| Copyright terms: Public domain | W3C validator |