MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnv0 Structured version   Visualization version   GIF version

Theorem cnv0 6089
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5235, ax-nul 5245, ax-pr 5371. (Revised by KP, 25-Oct-2021.)
Assertion
Ref Expression
cnv0 ∅ = ∅

Proof of Theorem cnv0
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 br0 5141 . . . . . 6 ¬ 𝑦𝑧
21intnan 486 . . . . 5 ¬ (𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
32nex 1800 . . . 4 ¬ ∃𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
43nex 1800 . . 3 ¬ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)
5 df-cnv 5627 . . . . 5 ∅ = {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧}
6 df-opab 5155 . . . . 5 {⟨𝑧, 𝑦⟩ ∣ 𝑦𝑧} = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
75, 6eqtri 2752 . . . 4 ∅ = {𝑥 ∣ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧)}
87eqabri 2871 . . 3 (𝑥∅ ↔ ∃𝑧𝑦(𝑥 = ⟨𝑧, 𝑦⟩ ∧ 𝑦𝑧))
94, 8mtbir 323 . 2 ¬ 𝑥
109nel0 4305 1 ∅ = ∅
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  c0 4284  cop 4583   class class class wbr 5092  {copab 5154  ccnv 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-dif 3906  df-nul 4285  df-br 5093  df-opab 5155  df-cnv 5627
This theorem is referenced by:  xp0  6107  cnveq0  6146  co01  6210  funcnv0  6548  f1o00  6799  tpos0  8189  cnvfi  9090  oduleval  18195  ust0  24105  nghmfval  24608  isnghm  24609  1pthdlem1  30083  mptiffisupp  32643  tocycf  33068  tocyc01  33069  mthmval  35568  resnonrel  43585  cononrel1  43587  cononrel2  43588  cnvrcl0  43618  0cnf  45878
  Copyright terms: Public domain W3C validator