Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5223, ax-nul 5230, ax-pr 5352. (Revised by KP, 25-Oct-2021.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5123 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
2 | 1 | intnan 487 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
3 | 2 | nex 1803 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
4 | 3 | nex 1803 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
5 | df-cnv 5597 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
6 | df-opab 5137 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
7 | 5, 6 | eqtri 2766 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
8 | 7 | abeq2i 2875 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
10 | 9 | nel0 4284 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 {cab 2715 ∅c0 4256 〈cop 4567 class class class wbr 5074 {copab 5136 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-dif 3890 df-nul 4257 df-br 5075 df-opab 5137 df-cnv 5597 |
This theorem is referenced by: xp0 6061 cnveq0 6100 co01 6165 funcnv0 6500 f1o00 6751 tpos0 8072 cnvfi 8963 oduleval 18007 ust0 23371 nghmfval 23886 isnghm 23887 1pthdlem1 28499 tocycf 31384 tocyc01 31385 mthmval 33537 resnonrel 41200 cononrel1 41202 cononrel2 41203 cnvrcl0 41233 0cnf 43418 |
Copyright terms: Public domain | W3C validator |