![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnv0 | Structured version Visualization version GIF version |
Description: The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5299, ax-nul 5306, ax-pr 5427. (Revised by KP, 25-Oct-2021.) |
Ref | Expression |
---|---|
cnv0 | ⊢ ◡∅ = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | br0 5197 | . . . . . 6 ⊢ ¬ 𝑦∅𝑧 | |
2 | 1 | intnan 486 | . . . . 5 ⊢ ¬ (𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
3 | 2 | nex 1801 | . . . 4 ⊢ ¬ ∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
4 | 3 | nex 1801 | . . 3 ⊢ ¬ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧) |
5 | df-cnv 5684 | . . . . 5 ⊢ ◡∅ = {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} | |
6 | df-opab 5211 | . . . . 5 ⊢ {〈𝑧, 𝑦〉 ∣ 𝑦∅𝑧} = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} | |
7 | 5, 6 | eqtri 2759 | . . . 4 ⊢ ◡∅ = {𝑥 ∣ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)} |
8 | 7 | eqabri 2876 | . . 3 ⊢ (𝑥 ∈ ◡∅ ↔ ∃𝑧∃𝑦(𝑥 = 〈𝑧, 𝑦〉 ∧ 𝑦∅𝑧)) |
9 | 4, 8 | mtbir 323 | . 2 ⊢ ¬ 𝑥 ∈ ◡∅ |
10 | 9 | nel0 4350 | 1 ⊢ ◡∅ = ∅ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1780 ∈ wcel 2105 {cab 2708 ∅c0 4322 〈cop 4634 class class class wbr 5148 {copab 5210 ◡ccnv 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-dif 3951 df-nul 4323 df-br 5149 df-opab 5211 df-cnv 5684 |
This theorem is referenced by: xp0 6157 cnveq0 6196 co01 6260 funcnv0 6614 f1o00 6868 tpos0 8247 cnvfi 9186 oduleval 18252 ust0 24044 nghmfval 24559 isnghm 24560 1pthdlem1 29821 mptiffisupp 32348 tocycf 32712 tocyc01 32713 mthmval 35030 resnonrel 42806 cononrel1 42808 cononrel2 42809 cnvrcl0 42839 0cnf 45052 |
Copyright terms: Public domain | W3C validator |