MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcnv Structured version   Visualization version   GIF version

Theorem elcnv 5815
Description: Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 5622 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
21eleq2i 2823 . 2 (𝐴𝑅𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥})
3 elopab 5465 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
42, 3bitri 275 1 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  cop 4579   class class class wbr 5089  {copab 5151  ccnv 5613
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-opab 5152  df-cnv 5622
This theorem is referenced by:  elcnv2  5816  gsummpt2co  33028
  Copyright terms: Public domain W3C validator