Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elcnv | Structured version Visualization version GIF version |
Description: Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.) |
Ref | Expression |
---|---|
elcnv | ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5588 | . . 3 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
2 | 1 | eleq2i 2830 | . 2 ⊢ (𝐴 ∈ ◡𝑅 ↔ 𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥}) |
3 | elopab 5433 | . 2 ⊢ (𝐴 ∈ {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) | |
4 | 2, 3 | bitri 274 | 1 ⊢ (𝐴 ∈ ◡𝑅 ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ 𝑦𝑅𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 {copab 5132 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: elcnv2 5775 gsummpt2co 31210 |
Copyright terms: Public domain | W3C validator |