MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elcnv Structured version   Visualization version   GIF version

Theorem elcnv 5848
Description: Membership in a converse relation. Equation 5 of [Suppes] p. 62. (Contributed by NM, 24-Mar-1998.)
Assertion
Ref Expression
elcnv (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑅,𝑦

Proof of Theorem elcnv
StepHypRef Expression
1 df-cnv 5654 . . 3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
21eleq2i 2821 . 2 (𝐴𝑅𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥})
3 elopab 5495 . 2 (𝐴 ∈ {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥} ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
42, 3bitri 275 1 (𝐴𝑅 ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ 𝑦𝑅𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  cop 4603   class class class wbr 5115  {copab 5177  ccnv 5645
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3457  df-dif 3925  df-un 3927  df-ss 3939  df-nul 4305  df-if 4497  df-sn 4598  df-pr 4600  df-op 4604  df-opab 5178  df-cnv 5654
This theorem is referenced by:  elcnv2  5849  gsummpt2co  32996
  Copyright terms: Public domain W3C validator