MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5865
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1861 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3463 . . . . 5 𝑥 ∈ V
3 vex 3463 . . . . 5 𝑦 ∈ V
42, 3brco 5850 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3463 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5862 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5862 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 628 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1848 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5186 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5662 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5663 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2768 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779   class class class wbr 5119  {copab 5181  ccnv 5653  ccom 5658
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-cnv 5662  df-co 5663
This theorem is referenced by:  rncoss  5955  rncoeq  5959  dmco  6243  cores2  6248  co01  6250  coi2  6252  relcnvtrg  6255  dfdm2  6270  f1cof1  6783  cofunex2g  7946  fparlem3  8111  fparlem4  8112  suppco  8203  fsuppcolem  9411  relexpcnv  15052  relexpaddg  15070  cnvps  18586  gimco  19249  gsumzf1o  19891  cnco  23202  ptrescn  23575  qtopcn  23650  hmeoco  23708  cncombf  25609  deg1val  26051  fcoinver  32531  ofpreima  32589  cycpmconjv  33099  cycpmconjs  33113  cyc3conja  33114  mbfmco  34242  eulerpartlemmf  34353  cvmliftmolem1  35249  cvmlift2lem9a  35271  cvmlift2lem9  35279  mclsppslem  35551  ftc1anclem3  37665  trlcocnv  40685  tendoicl  40761  cdlemk45  40912  rimco  42488  cononrel1  43565  cononrel2  43566  cnvtrcl0  43597  cnvtrrel  43641  relexpaddss  43689  frege131d  43735  brco2f1o  44003  brco3f1o  44004  clsneicnv  44076  neicvgnvo  44086  smfco  46779  upgrimpthslem1  47868  upgrimspths  47871
  Copyright terms: Public domain W3C validator