| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
| 2 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3451 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brco 5834 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3451 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 5 | brcnv 5846 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 7 | 5, 2 | brcnv 5846 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
| 8 | 6, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
| 11 | 10 | opabbii 5174 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
| 12 | df-cnv 5646 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
| 13 | df-co 5647 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 class class class wbr 5107 {copab 5169 ◡ccnv 5637 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 df-co 5647 |
| This theorem is referenced by: rncoss 5939 rncoeq 5943 dmco 6227 cores2 6232 co01 6234 coi2 6236 relcnvtrg 6239 dfdm2 6254 f1cof1 6766 cofunex2g 7928 fparlem3 8093 fparlem4 8094 suppco 8185 fsuppcolem 9352 relexpcnv 15001 relexpaddg 15019 cnvps 18537 gimco 19200 gsumzf1o 19842 cnco 23153 ptrescn 23526 qtopcn 23601 hmeoco 23659 cncombf 25559 deg1val 26001 fcoinver 32533 ofpreima 32589 cycpmconjv 33099 cycpmconjs 33113 cyc3conja 33114 mbfmco 34255 eulerpartlemmf 34366 cvmliftmolem1 35268 cvmlift2lem9a 35290 cvmlift2lem9 35298 mclsppslem 35570 ftc1anclem3 37689 trlcocnv 40714 tendoicl 40790 cdlemk45 40941 rimco 42506 cononrel1 43583 cononrel2 43584 cnvtrcl0 43615 cnvtrrel 43659 relexpaddss 43707 frege131d 43753 brco2f1o 44021 brco3f1o 44022 clsneicnv 44094 neicvgnvo 44104 smfco 46800 upgrimpthslem1 47907 upgrimspths 47910 |
| Copyright terms: Public domain | W3C validator |