| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
| 2 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brco 5824 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3448 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 5 | brcnv 5836 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 7 | 5, 2 | brcnv 5836 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
| 8 | 6, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
| 11 | 10 | opabbii 5169 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
| 12 | df-cnv 5639 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
| 13 | df-co 5640 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 class class class wbr 5102 {copab 5164 ◡ccnv 5630 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-co 5640 |
| This theorem is referenced by: rncoss 5928 rncoeq 5932 dmco 6215 cores2 6220 co01 6222 coi2 6224 relcnvtrg 6227 dfdm2 6242 f1cof1 6748 cofunex2g 7908 fparlem3 8070 fparlem4 8071 suppco 8162 fsuppcolem 9328 relexpcnv 14978 relexpaddg 14996 cnvps 18520 gimco 19183 gsumzf1o 19827 cnco 23187 ptrescn 23560 qtopcn 23635 hmeoco 23693 cncombf 25593 deg1val 26035 fcoinver 32584 ofpreima 32640 cycpmconjv 33115 cycpmconjs 33129 cyc3conja 33130 mbfmco 34249 eulerpartlemmf 34360 cvmliftmolem1 35262 cvmlift2lem9a 35284 cvmlift2lem9 35292 mclsppslem 35564 ftc1anclem3 37683 trlcocnv 40708 tendoicl 40784 cdlemk45 40935 rimco 42500 cononrel1 43577 cononrel2 43578 cnvtrcl0 43609 cnvtrrel 43653 relexpaddss 43701 frege131d 43747 brco2f1o 44015 brco3f1o 44016 clsneicnv 44088 neicvgnvo 44098 smfco 46794 upgrimpthslem1 47901 upgrimspths 47904 |
| Copyright terms: Public domain | W3C validator |