| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
| 2 | vex 3454 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3454 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brco 5837 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3454 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 5 | brcnv 5849 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 7 | 5, 2 | brcnv 5849 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
| 8 | 6, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
| 11 | 10 | opabbii 5177 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
| 12 | df-cnv 5649 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
| 13 | df-co 5650 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2763 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 class class class wbr 5110 {copab 5172 ◡ccnv 5640 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 df-co 5650 |
| This theorem is referenced by: rncoss 5942 rncoeq 5946 dmco 6230 cores2 6235 co01 6237 coi2 6239 relcnvtrg 6242 dfdm2 6257 f1cof1 6769 cofunex2g 7931 fparlem3 8096 fparlem4 8097 suppco 8188 fsuppcolem 9359 relexpcnv 15008 relexpaddg 15026 cnvps 18544 gimco 19207 gsumzf1o 19849 cnco 23160 ptrescn 23533 qtopcn 23608 hmeoco 23666 cncombf 25566 deg1val 26008 fcoinver 32540 ofpreima 32596 cycpmconjv 33106 cycpmconjs 33120 cyc3conja 33121 mbfmco 34262 eulerpartlemmf 34373 cvmliftmolem1 35275 cvmlift2lem9a 35297 cvmlift2lem9 35305 mclsppslem 35577 ftc1anclem3 37696 trlcocnv 40721 tendoicl 40797 cdlemk45 40948 rimco 42513 cononrel1 43590 cononrel2 43591 cnvtrcl0 43622 cnvtrrel 43666 relexpaddss 43714 frege131d 43760 brco2f1o 44028 brco3f1o 44029 clsneicnv 44101 neicvgnvo 44111 smfco 46807 upgrimpthslem1 47911 upgrimspths 47914 |
| Copyright terms: Public domain | W3C validator |