Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1869 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 3412 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3412 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 5739 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 3412 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 5751 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 5751 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 630 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1855 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 306 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 5120 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 5559 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 5560 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2775 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 399 = wceq 1543 ∃wex 1787 class class class wbr 5053 {copab 5115 ◡ccnv 5550 ∘ ccom 5555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-sb 2071 df-clab 2715 df-cleq 2729 df-clel 2816 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-br 5054 df-opab 5116 df-cnv 5559 df-co 5560 |
This theorem is referenced by: rncoss 5841 rncoeq 5844 dmco 6118 cores2 6123 co01 6125 coi2 6127 relcnvtrg 6130 dfdm2 6144 f1cof1 6626 f1coOLD 6628 cofunex2g 7723 fparlem3 7882 fparlem4 7883 suppco 7948 fsuppcolem 9017 relexpcnv 14598 relexpaddg 14616 cnvps 18084 gimco 18672 gsumzf1o 19297 cnco 22163 ptrescn 22536 qtopcn 22611 hmeoco 22669 cncombf 24555 deg1val 24994 fcoinver 30665 ofpreima 30722 cycpmconjv 31128 cycpmconjs 31142 cyc3conja 31143 mbfmco 31943 eulerpartlemmf 32054 cvmliftmolem1 32956 cvmlift2lem9a 32978 cvmlift2lem9 32986 mclsppslem 33258 ftc1anclem3 35589 trlcocnv 38471 tendoicl 38547 cdlemk45 38698 cononrel1 40878 cononrel2 40879 cnvtrcl0 40910 cnvtrrel 40955 relexpaddss 41003 frege131d 41049 brco2f1o 41319 brco3f1o 41320 clsneicnv 41392 neicvgnvo 41402 smfco 44008 |
Copyright terms: Public domain | W3C validator |