MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5840
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1861 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3448 . . . . 5 𝑥 ∈ V
3 vex 3448 . . . . 5 𝑦 ∈ V
42, 3brco 5825 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3448 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5837 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5837 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 628 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1848 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5169 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5639 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5640 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2762 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779   class class class wbr 5102  {copab 5164  ccnv 5630  ccom 5635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639  df-co 5640
This theorem is referenced by:  rncoss  5929  rncoeq  5933  dmco  6216  cores2  6221  co01  6223  coi2  6225  relcnvtrg  6228  dfdm2  6243  f1cof1  6749  cofunex2g  7909  fparlem3  8071  fparlem4  8072  suppco  8163  fsuppcolem  9329  relexpcnv  14979  relexpaddg  14997  cnvps  18521  gimco  19184  gsumzf1o  19828  cnco  23188  ptrescn  23561  qtopcn  23636  hmeoco  23694  cncombf  25594  deg1val  26036  fcoinver  32585  ofpreima  32641  cycpmconjv  33116  cycpmconjs  33130  cyc3conja  33131  mbfmco  34250  eulerpartlemmf  34361  cvmliftmolem1  35263  cvmlift2lem9a  35285  cvmlift2lem9  35293  mclsppslem  35565  ftc1anclem3  37684  trlcocnv  40709  tendoicl  40785  cdlemk45  40936  rimco  42501  cononrel1  43578  cononrel2  43579  cnvtrcl0  43610  cnvtrrel  43654  relexpaddss  43702  frege131d  43748  brco2f1o  44016  brco3f1o  44017  clsneicnv  44089  neicvgnvo  44099  smfco  46795  upgrimpthslem1  47902  upgrimspths  47905
  Copyright terms: Public domain W3C validator