| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
| 2 | vex 3448 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3448 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brco 5825 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3448 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 5 | brcnv 5837 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 7 | 5, 2 | brcnv 5837 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
| 8 | 6, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
| 11 | 10 | opabbii 5169 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
| 12 | df-cnv 5639 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
| 13 | df-co 5640 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 class class class wbr 5102 {copab 5164 ◡ccnv 5630 ∘ ccom 5635 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 df-co 5640 |
| This theorem is referenced by: rncoss 5929 rncoeq 5933 dmco 6216 cores2 6221 co01 6223 coi2 6225 relcnvtrg 6228 dfdm2 6243 f1cof1 6749 cofunex2g 7909 fparlem3 8071 fparlem4 8072 suppco 8163 fsuppcolem 9329 relexpcnv 14979 relexpaddg 14997 cnvps 18521 gimco 19184 gsumzf1o 19828 cnco 23188 ptrescn 23561 qtopcn 23636 hmeoco 23694 cncombf 25594 deg1val 26036 fcoinver 32585 ofpreima 32641 cycpmconjv 33116 cycpmconjs 33130 cyc3conja 33131 mbfmco 34250 eulerpartlemmf 34361 cvmliftmolem1 35263 cvmlift2lem9a 35285 cvmlift2lem9 35293 mclsppslem 35565 ftc1anclem3 37684 trlcocnv 40709 tendoicl 40785 cdlemk45 40936 rimco 42501 cononrel1 43578 cononrel2 43579 cnvtrcl0 43610 cnvtrrel 43654 relexpaddss 43702 frege131d 43748 brco2f1o 44016 brco3f1o 44017 clsneicnv 44089 neicvgnvo 44099 smfco 46795 upgrimpthslem1 47902 upgrimspths 47905 |
| Copyright terms: Public domain | W3C validator |