Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1865 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3426 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 5768 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 3426 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 5780 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 5780 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 626 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1851 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 302 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 5137 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 5588 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 5589 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2776 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 class class class wbr 5070 {copab 5132 ◡ccnv 5579 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 df-co 5589 |
This theorem is referenced by: rncoss 5870 rncoeq 5873 dmco 6147 cores2 6152 co01 6154 coi2 6156 relcnvtrg 6159 dfdm2 6173 f1cof1 6665 f1coOLD 6667 cofunex2g 7766 fparlem3 7925 fparlem4 7926 suppco 7993 fsuppcolem 9090 relexpcnv 14674 relexpaddg 14692 cnvps 18211 gimco 18799 gsumzf1o 19428 cnco 22325 ptrescn 22698 qtopcn 22773 hmeoco 22831 cncombf 24727 deg1val 25166 fcoinver 30847 ofpreima 30904 cycpmconjv 31311 cycpmconjs 31325 cyc3conja 31326 mbfmco 32131 eulerpartlemmf 32242 cvmliftmolem1 33143 cvmlift2lem9a 33165 cvmlift2lem9 33173 mclsppslem 33445 ftc1anclem3 35779 trlcocnv 38661 tendoicl 38737 cdlemk45 38888 cononrel1 41091 cononrel2 41092 cnvtrcl0 41123 cnvtrrel 41167 relexpaddss 41215 frege131d 41261 brco2f1o 41531 brco3f1o 41532 clsneicnv 41604 neicvgnvo 41614 smfco 44223 |
Copyright terms: Public domain | W3C validator |