Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1864 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3436 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 5779 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 3436 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 5791 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 5791 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 627 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1850 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 5141 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 5597 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 5598 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2776 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 class class class wbr 5074 {copab 5136 ◡ccnv 5588 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-cnv 5597 df-co 5598 |
This theorem is referenced by: rncoss 5881 rncoeq 5884 dmco 6158 cores2 6163 co01 6165 coi2 6167 relcnvtrg 6170 dfdm2 6184 f1cof1 6681 f1coOLD 6683 cofunex2g 7792 fparlem3 7954 fparlem4 7955 suppco 8022 fsuppcolem 9160 relexpcnv 14746 relexpaddg 14764 cnvps 18296 gimco 18884 gsumzf1o 19513 cnco 22417 ptrescn 22790 qtopcn 22865 hmeoco 22923 cncombf 24822 deg1val 25261 fcoinver 30946 ofpreima 31002 cycpmconjv 31409 cycpmconjs 31423 cyc3conja 31424 mbfmco 32231 eulerpartlemmf 32342 cvmliftmolem1 33243 cvmlift2lem9a 33265 cvmlift2lem9 33273 mclsppslem 33545 ftc1anclem3 35852 trlcocnv 38734 tendoicl 38810 cdlemk45 38961 cononrel1 41202 cononrel2 41203 cnvtrcl0 41234 cnvtrrel 41278 relexpaddss 41326 frege131d 41372 brco2f1o 41642 brco3f1o 41643 clsneicnv 41715 neicvgnvo 41725 smfco 44336 |
Copyright terms: Public domain | W3C validator |