MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5606
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1822 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3419 . . . . 5 𝑥 ∈ V
3 vex 3419 . . . . 5 𝑦 ∈ V
42, 3brco 5591 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3419 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5603 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5603 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 617 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1810 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 295 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 4996 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5415 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5416 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2813 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 387   = wceq 1507  wex 1742   class class class wbr 4929  {copab 4991  ccnv 5406  ccom 5411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2751  ax-sep 5060  ax-nul 5067  ax-pr 5186
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2760  df-cleq 2772  df-clel 2847  df-nfc 2919  df-rab 3098  df-v 3418  df-dif 3833  df-un 3835  df-in 3837  df-ss 3844  df-nul 4180  df-if 4351  df-sn 4442  df-pr 4444  df-op 4448  df-br 4930  df-opab 4992  df-cnv 5415  df-co 5416
This theorem is referenced by:  rncoss  5685  rncoeq  5688  dmco  5946  cores2  5951  co01  5953  coi2  5955  relcnvtr  5958  dfdm2  5970  f1co  6414  cofunex2g  7463  fparlem3  7617  fparlem4  7618  suppco  7673  supp0cosupp0OLD  7676  imacosuppOLD  7678  fsuppcolem  8659  relexpcnv  14255  relexpaddg  14273  cnvps  17680  gimco  18179  gsumzf1o  18786  cnco  21578  ptrescn  21951  qtopcn  22026  hmeoco  22084  cncombf  23962  deg1val  24393  fcoinver  30121  ofpreima  30172  mbfmco  31164  eulerpartlemmf  31275  cvmliftmolem1  32110  cvmlift2lem9a  32132  cvmlift2lem9  32140  mclsppslem  32347  ftc1anclem3  34407  trlcocnv  37298  tendoicl  37374  cdlemk45  37525  cononrel1  39313  cononrel2  39314  cnvtrcl0  39346  cnvtrrel  39375  relexpaddss  39423  frege131d  39469  brco2f1o  39742  brco3f1o  39743  clsneicnv  39815  neicvgnvo  39825  smfco  42506
  Copyright terms: Public domain W3C validator