Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version |
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | exancom 1863 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
2 | vex 3445 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | vex 3445 | . . . . 5 ⊢ 𝑦 ∈ V | |
4 | 2, 3 | brco 5812 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
5 | vex 3445 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
6 | 3, 5 | brcnv 5824 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
7 | 5, 2 | brcnv 5824 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
8 | 6, 7 | anbi12i 627 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
9 | 8 | exbii 1849 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
10 | 1, 4, 9 | 3bitr4i 302 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
11 | 10 | opabbii 5159 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
12 | df-cnv 5628 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
13 | df-co 5629 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
14 | 11, 12, 13 | 3eqtr4i 2774 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1540 ∃wex 1780 class class class wbr 5092 {copab 5154 ◡ccnv 5619 ∘ ccom 5624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-sn 4574 df-pr 4576 df-op 4580 df-br 5093 df-opab 5155 df-cnv 5628 df-co 5629 |
This theorem is referenced by: rncoss 5913 rncoeq 5916 dmco 6192 cores2 6197 co01 6199 coi2 6201 relcnvtrg 6204 dfdm2 6219 f1cof1 6732 f1coOLD 6734 cofunex2g 7860 fparlem3 8022 fparlem4 8023 suppco 8092 fsuppcolem 9258 relexpcnv 14845 relexpaddg 14863 cnvps 18393 gimco 18980 gsumzf1o 19608 cnco 22523 ptrescn 22896 qtopcn 22971 hmeoco 23029 cncombf 24928 deg1val 25367 fcoinver 31233 ofpreima 31289 cycpmconjv 31696 cycpmconjs 31710 cyc3conja 31711 mbfmco 32531 eulerpartlemmf 32642 cvmliftmolem1 33542 cvmlift2lem9a 33564 cvmlift2lem9 33572 mclsppslem 33844 ftc1anclem3 35965 trlcocnv 38996 tendoicl 39072 cdlemk45 39223 rimco 40510 cononrel1 41531 cononrel2 41532 cnvtrcl0 41563 cnvtrrel 41607 relexpaddss 41655 frege131d 41701 brco2f1o 41971 brco3f1o 41972 clsneicnv 42044 neicvgnvo 42054 smfco 44685 |
Copyright terms: Public domain | W3C validator |