MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5783
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1865 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3426 . . . . 5 𝑥 ∈ V
3 vex 3426 . . . . 5 𝑦 ∈ V
42, 3brco 5768 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3426 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5780 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5780 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 626 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1851 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 302 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5137 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5588 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5589 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2776 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wex 1783   class class class wbr 5070  {copab 5132  ccnv 5579  ccom 5584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-cnv 5588  df-co 5589
This theorem is referenced by:  rncoss  5870  rncoeq  5873  dmco  6147  cores2  6152  co01  6154  coi2  6156  relcnvtrg  6159  dfdm2  6173  f1cof1  6665  f1coOLD  6667  cofunex2g  7766  fparlem3  7925  fparlem4  7926  suppco  7993  fsuppcolem  9090  relexpcnv  14674  relexpaddg  14692  cnvps  18211  gimco  18799  gsumzf1o  19428  cnco  22325  ptrescn  22698  qtopcn  22773  hmeoco  22831  cncombf  24727  deg1val  25166  fcoinver  30847  ofpreima  30904  cycpmconjv  31311  cycpmconjs  31325  cyc3conja  31326  mbfmco  32131  eulerpartlemmf  32242  cvmliftmolem1  33143  cvmlift2lem9a  33165  cvmlift2lem9  33173  mclsppslem  33445  ftc1anclem3  35779  trlcocnv  38661  tendoicl  38737  cdlemk45  38888  cononrel1  41091  cononrel2  41092  cnvtrcl0  41123  cnvtrrel  41167  relexpaddss  41215  frege131d  41261  brco2f1o  41531  brco3f1o  41532  clsneicnv  41604  neicvgnvo  41614  smfco  44223
  Copyright terms: Public domain W3C validator