MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5794
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1864 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3436 . . . . 5 𝑥 ∈ V
3 vex 3436 . . . . 5 𝑦 ∈ V
42, 3brco 5779 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3436 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5791 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5791 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 627 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1850 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5141 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5597 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5598 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2776 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782   class class class wbr 5074  {copab 5136  ccnv 5588  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-cnv 5597  df-co 5598
This theorem is referenced by:  rncoss  5881  rncoeq  5884  dmco  6158  cores2  6163  co01  6165  coi2  6167  relcnvtrg  6170  dfdm2  6184  f1cof1  6681  f1coOLD  6683  cofunex2g  7792  fparlem3  7954  fparlem4  7955  suppco  8022  fsuppcolem  9160  relexpcnv  14746  relexpaddg  14764  cnvps  18296  gimco  18884  gsumzf1o  19513  cnco  22417  ptrescn  22790  qtopcn  22865  hmeoco  22923  cncombf  24822  deg1val  25261  fcoinver  30946  ofpreima  31002  cycpmconjv  31409  cycpmconjs  31423  cyc3conja  31424  mbfmco  32231  eulerpartlemmf  32342  cvmliftmolem1  33243  cvmlift2lem9a  33265  cvmlift2lem9  33273  mclsppslem  33545  ftc1anclem3  35852  trlcocnv  38734  tendoicl  38810  cdlemk45  38961  cononrel1  41202  cononrel2  41203  cnvtrcl0  41234  cnvtrrel  41278  relexpaddss  41326  frege131d  41372  brco2f1o  41642  brco3f1o  41643  clsneicnv  41715  neicvgnvo  41725  smfco  44336
  Copyright terms: Public domain W3C validator