| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvco | Structured version Visualization version GIF version | ||
| Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvco | ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exancom 1861 | . . . 4 ⊢ (∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) | |
| 2 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | vex 3440 | . . . . 5 ⊢ 𝑦 ∈ V | |
| 4 | 2, 3 | brco 5813 | . . . 4 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧 ∧ 𝑧𝐴𝑦)) |
| 5 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 6 | 3, 5 | brcnv 5825 | . . . . . 6 ⊢ (𝑦◡𝐴𝑧 ↔ 𝑧𝐴𝑦) |
| 7 | 5, 2 | brcnv 5825 | . . . . . 6 ⊢ (𝑧◡𝐵𝑥 ↔ 𝑥𝐵𝑧) |
| 8 | 6, 7 | anbi12i 628 | . . . . 5 ⊢ ((𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ (𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 9 | 8 | exbii 1848 | . . . 4 ⊢ (∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦 ∧ 𝑥𝐵𝑧)) |
| 10 | 1, 4, 9 | 3bitr4i 303 | . . 3 ⊢ (𝑥(𝐴 ∘ 𝐵)𝑦 ↔ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)) |
| 11 | 10 | opabbii 5159 | . 2 ⊢ {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} |
| 12 | df-cnv 5627 | . 2 ⊢ ◡(𝐴 ∘ 𝐵) = {〈𝑦, 𝑥〉 ∣ 𝑥(𝐴 ∘ 𝐵)𝑦} | |
| 13 | df-co 5628 | . 2 ⊢ (◡𝐵 ∘ ◡𝐴) = {〈𝑦, 𝑥〉 ∣ ∃𝑧(𝑦◡𝐴𝑧 ∧ 𝑧◡𝐵𝑥)} | |
| 14 | 11, 12, 13 | 3eqtr4i 2762 | 1 ⊢ ◡(𝐴 ∘ 𝐵) = (◡𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 class class class wbr 5092 {copab 5154 ◡ccnv 5618 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 df-co 5628 |
| This theorem is referenced by: rncoss 5918 rncoeq 5923 dmco 6203 cores2 6208 co01 6210 coi2 6212 relcnvtrg 6215 dfdm2 6229 f1cof1 6730 cofunex2g 7885 fparlem3 8047 fparlem4 8048 suppco 8139 fsuppcolem 9291 relexpcnv 14942 relexpaddg 14960 cnvps 18484 gimco 19147 gsumzf1o 19791 cnco 23151 ptrescn 23524 qtopcn 23599 hmeoco 23657 cncombf 25557 deg1val 25999 fcoinver 32553 ofpreima 32616 cycpmconjv 33093 cycpmconjs 33107 cyc3conja 33108 mbfmco 34248 eulerpartlemmf 34359 cvmliftmolem1 35274 cvmlift2lem9a 35296 cvmlift2lem9 35304 mclsppslem 35576 ftc1anclem3 37695 trlcocnv 40719 tendoicl 40795 cdlemk45 40946 rimco 42511 cononrel1 43587 cononrel2 43588 cnvtrcl0 43619 cnvtrrel 43663 relexpaddss 43711 frege131d 43757 brco2f1o 44025 brco3f1o 44026 clsneicnv 44098 neicvgnvo 44108 smfco 46803 upgrimpthslem1 47911 upgrimspths 47914 |
| Copyright terms: Public domain | W3C validator |