MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5849
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1861 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3451 . . . . 5 𝑥 ∈ V
3 vex 3451 . . . . 5 𝑦 ∈ V
42, 3brco 5834 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3451 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5846 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5846 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 628 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1848 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5174 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5646 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5647 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2762 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779   class class class wbr 5107  {copab 5169  ccnv 5637  ccom 5642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-cnv 5646  df-co 5647
This theorem is referenced by:  rncoss  5939  rncoeq  5943  dmco  6227  cores2  6232  co01  6234  coi2  6236  relcnvtrg  6239  dfdm2  6254  f1cof1  6766  cofunex2g  7928  fparlem3  8093  fparlem4  8094  suppco  8185  fsuppcolem  9352  relexpcnv  15001  relexpaddg  15019  cnvps  18537  gimco  19200  gsumzf1o  19842  cnco  23153  ptrescn  23526  qtopcn  23601  hmeoco  23659  cncombf  25559  deg1val  26001  fcoinver  32533  ofpreima  32589  cycpmconjv  33099  cycpmconjs  33113  cyc3conja  33114  mbfmco  34255  eulerpartlemmf  34366  cvmliftmolem1  35268  cvmlift2lem9a  35290  cvmlift2lem9  35298  mclsppslem  35570  ftc1anclem3  37689  trlcocnv  40714  tendoicl  40790  cdlemk45  40941  rimco  42506  cononrel1  43583  cononrel2  43584  cnvtrcl0  43615  cnvtrrel  43659  relexpaddss  43707  frege131d  43753  brco2f1o  44021  brco3f1o  44022  clsneicnv  44094  neicvgnvo  44104  smfco  46800  upgrimpthslem1  47907  upgrimspths  47910
  Copyright terms: Public domain W3C validator