MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5910
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1860 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3492 . . . . 5 𝑥 ∈ V
3 vex 3492 . . . . 5 𝑦 ∈ V
42, 3brco 5895 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3492 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5907 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5907 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 627 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1846 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5233 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5708 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5709 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2778 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1537  wex 1777   class class class wbr 5166  {copab 5228  ccnv 5699  ccom 5704
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708  df-co 5709
This theorem is referenced by:  rncoss  5998  rncoeq  6002  dmco  6285  cores2  6290  co01  6292  coi2  6294  relcnvtrg  6297  dfdm2  6312  f1cof1  6827  f1coOLD  6829  cofunex2g  7990  fparlem3  8155  fparlem4  8156  suppco  8247  fsuppcolem  9470  relexpcnv  15084  relexpaddg  15102  cnvps  18648  gimco  19308  gsumzf1o  19954  cnco  23295  ptrescn  23668  qtopcn  23743  hmeoco  23801  cncombf  25712  deg1val  26155  fcoinver  32626  ofpreima  32683  cycpmconjv  33135  cycpmconjs  33149  cyc3conja  33150  mbfmco  34229  eulerpartlemmf  34340  cvmliftmolem1  35249  cvmlift2lem9a  35271  cvmlift2lem9  35279  mclsppslem  35551  ftc1anclem3  37655  trlcocnv  40677  tendoicl  40753  cdlemk45  40904  rimco  42473  cononrel1  43556  cononrel2  43557  cnvtrcl0  43588  cnvtrrel  43632  relexpaddss  43680  frege131d  43726  brco2f1o  43994  brco3f1o  43995  clsneicnv  44067  neicvgnvo  44077  smfco  46723
  Copyright terms: Public domain W3C validator