MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvco Structured version   Visualization version   GIF version

Theorem cnvco 5824
Description: Distributive law of converse over class composition. Theorem 26 of [Suppes] p. 64. (Contributed by NM, 19-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvco (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exancom 1862 . . . 4 (∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
2 vex 3440 . . . . 5 𝑥 ∈ V
3 vex 3440 . . . . 5 𝑦 ∈ V
42, 3brco 5809 . . . 4 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑥𝐵𝑧𝑧𝐴𝑦))
5 vex 3440 . . . . . . 7 𝑧 ∈ V
63, 5brcnv 5821 . . . . . 6 (𝑦𝐴𝑧𝑧𝐴𝑦)
75, 2brcnv 5821 . . . . . 6 (𝑧𝐵𝑥𝑥𝐵𝑧)
86, 7anbi12i 628 . . . . 5 ((𝑦𝐴𝑧𝑧𝐵𝑥) ↔ (𝑧𝐴𝑦𝑥𝐵𝑧))
98exbii 1849 . . . 4 (∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥) ↔ ∃𝑧(𝑧𝐴𝑦𝑥𝐵𝑧))
101, 4, 93bitr4i 303 . . 3 (𝑥(𝐴𝐵)𝑦 ↔ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥))
1110opabbii 5156 . 2 {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦} = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
12 df-cnv 5622 . 2 (𝐴𝐵) = {⟨𝑦, 𝑥⟩ ∣ 𝑥(𝐴𝐵)𝑦}
13 df-co 5623 . 2 (𝐵𝐴) = {⟨𝑦, 𝑥⟩ ∣ ∃𝑧(𝑦𝐴𝑧𝑧𝐵𝑥)}
1411, 12, 133eqtr4i 2764 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780   class class class wbr 5089  {copab 5151  ccnv 5613  ccom 5618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-cnv 5622  df-co 5623
This theorem is referenced by:  rncoss  5915  rncoeq  5920  dmco  6202  cores2  6207  co01  6209  coi2  6211  relcnvtrg  6214  dfdm2  6228  f1cof1  6729  cofunex2g  7882  fparlem3  8044  fparlem4  8045  suppco  8136  fsuppcolem  9285  relexpcnv  14942  relexpaddg  14960  cnvps  18484  gimco  19180  gsumzf1o  19824  cnco  23181  ptrescn  23554  qtopcn  23629  hmeoco  23687  cncombf  25586  deg1val  26028  fcoinver  32584  ofpreima  32647  cycpmconjv  33111  cycpmconjs  33125  cyc3conja  33126  esplysply  33592  mbfmco  34277  eulerpartlemmf  34388  cvmliftmolem1  35325  cvmlift2lem9a  35347  cvmlift2lem9  35355  mclsppslem  35627  ftc1anclem3  37734  trlcocnv  40818  tendoicl  40894  cdlemk45  41045  rimco  42610  cononrel1  43686  cononrel2  43687  cnvtrcl0  43718  cnvtrrel  43762  relexpaddss  43810  frege131d  43856  brco2f1o  44124  brco3f1o  44125  clsneicnv  44197  neicvgnvo  44207  smfco  46899  upgrimpthslem1  48006  upgrimspths  48009
  Copyright terms: Public domain W3C validator