![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5690 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 5199 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
6 | 5 | nfopab 5221 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
7 | 1, 6 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2879 class class class wbr 5152 {copab 5214 ◡ccnv 5681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-cnv 5690 |
This theorem is referenced by: nfrn 5958 nfpred 6315 nffun 6581 nff1 6796 nfsup 9482 nfinf 9513 gsumcom2 19937 ptbasfi 23505 mbfposr 25601 itg1climres 25664 funcnvmpt 32474 nfwsuc 35447 aomclem8 42516 rfcnpre1 44412 rfcnpre2 44424 smfpimcc 46225 |
Copyright terms: Public domain | W3C validator |