| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5639 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
| 2 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 5149 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
| 6 | 5 | nfopab 5171 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
| 7 | 1, 6 | nfcxfr 2889 | 1 ⊢ Ⅎ𝑥◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2876 class class class wbr 5102 {copab 5164 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: nfrn 5905 nfpred 6267 nffun 6523 nff1 6736 nfsup 9378 nfinf 9410 gsumcom2 19881 ptbasfi 23444 mbfposr 25529 itg1climres 25591 funcnvmpt 32564 nfwsuc 35779 aomclem8 43023 rfcnpre1 44986 rfcnpre2 44998 smfpimcc 46779 |
| Copyright terms: Public domain | W3C validator |