![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5697 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
2 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2903 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 5195 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
6 | 5 | nfopab 5217 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
7 | 1, 6 | nfcxfr 2901 | 1 ⊢ Ⅎ𝑥◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2888 class class class wbr 5148 {copab 5210 ◡ccnv 5688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-cnv 5697 |
This theorem is referenced by: nfrn 5966 nfpred 6328 nffun 6591 nff1 6803 nfsup 9489 nfinf 9520 gsumcom2 20008 ptbasfi 23605 mbfposr 25701 itg1climres 25764 funcnvmpt 32684 nfwsuc 35800 aomclem8 43050 rfcnpre1 44957 rfcnpre2 44969 smfpimcc 46764 |
Copyright terms: Public domain | W3C validator |