MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcnv Structured version   Visualization version   GIF version

Theorem nfcnv 5845
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfcnv.1 𝑥𝐴
Assertion
Ref Expression
nfcnv 𝑥𝐴

Proof of Theorem nfcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 5649 . 2 𝐴 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
2 nfcv 2892 . . . 4 𝑥𝑧
3 nfcnv.1 . . . 4 𝑥𝐴
4 nfcv 2892 . . . 4 𝑥𝑦
52, 3, 4nfbr 5157 . . 3 𝑥 𝑧𝐴𝑦
65nfopab 5179 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
71, 6nfcxfr 2890 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2877   class class class wbr 5110  {copab 5172  ccnv 5640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-cnv 5649
This theorem is referenced by:  nfrn  5919  nfpred  6282  nffun  6542  nff1  6757  nfsup  9409  nfinf  9441  gsumcom2  19912  ptbasfi  23475  mbfposr  25560  itg1climres  25622  funcnvmpt  32598  nfwsuc  35813  aomclem8  43057  rfcnpre1  45020  rfcnpre2  45032  smfpimcc  46813
  Copyright terms: Public domain W3C validator