| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5649 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
| 2 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2892 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 5157 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
| 6 | 5 | nfopab 5179 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
| 7 | 1, 6 | nfcxfr 2890 | 1 ⊢ Ⅎ𝑥◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2877 class class class wbr 5110 {copab 5172 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 |
| This theorem is referenced by: nfrn 5919 nfpred 6282 nffun 6542 nff1 6757 nfsup 9409 nfinf 9441 gsumcom2 19912 ptbasfi 23475 mbfposr 25560 itg1climres 25622 funcnvmpt 32598 nfwsuc 35813 aomclem8 43057 rfcnpre1 45020 rfcnpre2 45032 smfpimcc 46813 |
| Copyright terms: Public domain | W3C validator |