| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5622 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
| 2 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 5136 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
| 6 | 5 | nfopab 5158 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
| 7 | 1, 6 | nfcxfr 2892 | 1 ⊢ Ⅎ𝑥◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2879 class class class wbr 5089 {copab 5151 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: nfrn 5891 nfpred 6253 nffun 6504 nff1 6717 nfsup 9335 nfinf 9367 gsumcom2 19887 ptbasfi 23496 mbfposr 25580 itg1climres 25642 funcnvmpt 32649 nfwsuc 35860 aomclem8 43102 rfcnpre1 45064 rfcnpre2 45076 smfpimcc 46854 |
| Copyright terms: Public domain | W3C validator |