MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcnv Structured version   Visualization version   GIF version

Theorem nfcnv 5879
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfcnv.1 𝑥𝐴
Assertion
Ref Expression
nfcnv 𝑥𝐴

Proof of Theorem nfcnv
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-cnv 5685 . 2 𝐴 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
2 nfcv 2904 . . . 4 𝑥𝑧
3 nfcnv.1 . . . 4 𝑥𝐴
4 nfcv 2904 . . . 4 𝑥𝑦
52, 3, 4nfbr 5196 . . 3 𝑥 𝑧𝐴𝑦
65nfopab 5218 . 2 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴𝑦}
71, 6nfcxfr 2902 1 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wnfc 2884   class class class wbr 5149  {copab 5211  ccnv 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-cnv 5685
This theorem is referenced by:  nfrn  5952  nfpred  6306  nffun  6572  nff1  6786  nfsup  9446  nfinf  9477  gsumcom2  19843  ptbasfi  23085  mbfposr  25169  itg1climres  25232  funcnvmpt  31892  nfwsuc  34790  aomclem8  41803  rfcnpre1  43703  rfcnpre2  43715  smfpimcc  45524
  Copyright terms: Public domain W3C validator