![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5708 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
2 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 5213 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
6 | 5 | nfopab 5235 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑥◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2893 class class class wbr 5166 {copab 5228 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: nfrn 5977 nfpred 6337 nffun 6601 nff1 6815 nfsup 9520 nfinf 9551 gsumcom2 20017 ptbasfi 23610 mbfposr 25706 itg1climres 25769 funcnvmpt 32685 nfwsuc 35782 aomclem8 43018 rfcnpre1 44919 rfcnpre2 44931 smfpimcc 46729 |
Copyright terms: Public domain | W3C validator |