Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5533 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
5 | 2, 3, 4 | nfbr 5077 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
6 | 5 | nfopab 5098 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
7 | 1, 6 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥◡𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnfc 2879 class class class wbr 5030 {copab 5092 ◡ccnv 5524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-v 3400 df-dif 3846 df-un 3848 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-br 5031 df-opab 5093 df-cnv 5533 |
This theorem is referenced by: nfrn 5795 nfpred 6134 nffun 6362 nff1 6572 nfsup 8990 nfinf 9021 gsumcom2 19216 ptbasfi 22334 mbfposr 24406 itg1climres 24469 funcnvmpt 30581 nfwsuc 33427 aomclem8 40480 rfcnpre1 42122 rfcnpre2 42134 smfpimcc 43902 |
Copyright terms: Public domain | W3C validator |