| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfcnv | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for converse relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfcnv.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfcnv | ⊢ Ⅎ𝑥◡𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5667 | . 2 ⊢ ◡𝐴 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} | |
| 2 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑧 | |
| 3 | nfcnv.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 4 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥𝑦 | |
| 5 | 2, 3, 4 | nfbr 5171 | . . 3 ⊢ Ⅎ𝑥 𝑧𝐴𝑦 |
| 6 | 5 | nfopab 5193 | . 2 ⊢ Ⅎ𝑥{〈𝑦, 𝑧〉 ∣ 𝑧𝐴𝑦} |
| 7 | 1, 6 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑥◡𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnfc 2884 class class class wbr 5124 {copab 5186 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 |
| This theorem is referenced by: nfrn 5937 nfpred 6300 nffun 6564 nff1 6777 nfsup 9468 nfinf 9500 gsumcom2 19961 ptbasfi 23524 mbfposr 25610 itg1climres 25672 funcnvmpt 32650 nfwsuc 35841 aomclem8 43052 rfcnpre1 45010 rfcnpre2 45022 smfpimcc 46804 |
| Copyright terms: Public domain | W3C validator |