MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvg Structured version   Visualization version   GIF version

Theorem brcnvg 5880
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem brcnvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5153 . 2 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
2 breq1 5152 . 2 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
3 df-cnv 5685 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
41, 2, 3brabg 5540 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5149  ccnv 5676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-cnv 5685
This theorem is referenced by:  opelcnvg  5881  brcnv  5883  brelrng  5941  elinisegg  6093  relbrcnvg  6105  brcodir  6121  predep  6332  dffv2  6987  ersym  8715  brdifun  8732  eqinf  9479  inflb  9484  infglb  9485  infglbb  9486  infltoreq  9497  infempty  9502  brcnvtrclfv  14950  oduleg  18243  posglbdg  18368  znleval  21110  slenlt  27255  brbtwn  28188  fcoinvbr  31867  cnvordtrestixx  32924  xrge0iifiso  32946  orvcgteel  33497  fv1stcnv  34779  fv2ndcnv  34780  wsuclem  34828  wsuclb  34831  colineardim1  35064  eldmcnv  37262  ineccnvmo  37274  alrmomorn  37275  brcnvin  37288  brxrn  37292  dfcoss3  37332  cosscnv  37334  brcoss3  37351  brcosscnv  37390  cosscnvssid3  37394  cosscnvssid4  37395  brnonrel  42388  ntrneifv2  42879  glbprlem  47646  gte-lte  47817  gt-lt  47818
  Copyright terms: Public domain W3C validator