![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
Ref | Expression |
---|---|
brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4933 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 4932 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
3 | df-cnv 5415 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
4 | 1, 2, 3 | brabg 5280 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∈ wcel 2050 class class class wbr 4929 ◡ccnv 5406 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-13 2301 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pr 5186 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-mo 2547 df-eu 2584 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-rab 3097 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-if 4351 df-sn 4442 df-pr 4444 df-op 4448 df-br 4930 df-opab 4992 df-cnv 5415 |
This theorem is referenced by: opelcnvg 5601 brcnv 5603 brelrng 5654 eliniseg 5798 relbrcnvg 5808 brcodir 5819 elpredg 6000 predep 6012 dffv2 6584 ersym 8101 brdifun 8118 eqinf 8743 inflb 8748 infglb 8749 infglbb 8750 infltoreq 8761 infempty 8766 brcnvtrclfv 14224 oduleg 17600 posglbd 17618 znleval 20403 brbtwn 26388 fcoinvbr 30122 cnvordtrestixx 30806 xrge0iifiso 30828 orvcgteel 31377 fv1stcnv 32546 fv2ndcnv 32547 wsuclem 32639 wsuclb 32642 slenlt 32758 colineardim1 33049 eldmcnv 35054 ineccnvmo 35063 alrmomorn 35064 brxrn 35077 dfcoss3 35113 brcoss3 35129 brcosscnv 35163 cosscnvssid3 35167 cosscnvssid4 35168 brnonrel 39317 ntrneifv2 39799 gte-lte 44196 gt-lt 44197 |
Copyright terms: Public domain | W3C validator |