| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5093 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5092 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5622 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5477 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 class class class wbr 5089 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-cnv 5622 |
| This theorem is referenced by: opelcnvg 5819 brcnv 5821 brelrng 5880 elinisegg 6041 relbrcnvg 6053 brcodir 6065 predep 6277 dffv2 6917 ersym 8634 brdifun 8652 eqinf 9369 inflb 9374 infglb 9375 infglbb 9376 infltoreq 9388 infempty 9393 brcnvtrclfv 14910 oduleg 18196 posglbdg 18319 znleval 21491 slenlt 27691 brbtwn 28877 fcoinvbr 32585 cnvordtrestixx 33926 xrge0iifiso 33948 orvcgteel 34481 fv1stcnv 35821 fv2ndcnv 35822 wsuclem 35867 wsuclb 35870 colineardim1 36105 eldmcnv 38376 ineccnvmo 38388 alrmomorn 38389 brcnvin 38401 brxrn 38406 dfcoss3 38515 cosscnv 38517 brcoss3 38534 brcosscnv 38573 cosscnvssid3 38577 cosscnvssid4 38578 brnonrel 43681 ntrneifv2 44172 glbprlem 49064 gte-lte 49824 gt-lt 49825 |
| Copyright terms: Public domain | W3C validator |