MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvg Structured version   Visualization version   GIF version

Theorem brcnvg 5834
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem brcnvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5106 . 2 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
2 breq1 5105 . 2 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
3 df-cnv 5639 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
41, 2, 3brabg 5494 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2109   class class class wbr 5102  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-cnv 5639
This theorem is referenced by:  opelcnvg  5835  brcnv  5837  brelrng  5895  elinisegg  6054  relbrcnvg  6066  brcodir  6081  predep  6292  dffv2  6939  ersym  8661  brdifun  8679  eqinf  9413  inflb  9418  infglb  9419  infglbb  9420  infltoreq  9432  infempty  9437  brcnvtrclfv  14947  oduleg  18233  posglbdg  18356  znleval  21498  slenlt  27699  brbtwn  28881  fcoinvbr  32586  cnvordtrestixx  33898  xrge0iifiso  33920  orvcgteel  34454  fv1stcnv  35759  fv2ndcnv  35760  wsuclem  35808  wsuclb  35811  colineardim1  36044  eldmcnv  38322  ineccnvmo  38334  alrmomorn  38335  brcnvin  38347  brxrn  38351  dfcoss3  38400  cosscnv  38402  brcoss3  38419  brcosscnv  38458  cosscnvssid3  38462  cosscnvssid4  38463  brnonrel  43573  ntrneifv2  44064  glbprlem  48948  gte-lte  49708  gt-lt  49709
  Copyright terms: Public domain W3C validator