MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brcnvg Structured version   Visualization version   GIF version

Theorem brcnvg 5890
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.)
Assertion
Ref Expression
brcnvg ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))

Proof of Theorem brcnvg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5147 . 2 (𝑥 = 𝐴 → (𝑦𝑅𝑥𝑦𝑅𝐴))
2 breq1 5146 . 2 (𝑦 = 𝐵 → (𝑦𝑅𝐴𝐵𝑅𝐴))
3 df-cnv 5693 . 2 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝑦𝑅𝑥}
41, 2, 3brabg 5544 1 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝐵𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108   class class class wbr 5143  ccnv 5684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2715  df-cleq 2729  df-clel 2816  df-rab 3437  df-v 3482  df-dif 3954  df-un 3956  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-br 5144  df-opab 5206  df-cnv 5693
This theorem is referenced by:  opelcnvg  5891  brcnv  5893  brelrng  5952  elinisegg  6111  relbrcnvg  6123  brcodir  6139  predep  6351  dffv2  7004  ersym  8757  brdifun  8775  eqinf  9524  inflb  9529  infglb  9530  infglbb  9531  infltoreq  9542  infempty  9547  brcnvtrclfv  15042  oduleg  18335  posglbdg  18460  znleval  21573  slenlt  27797  brbtwn  28914  fcoinvbr  32618  cnvordtrestixx  33912  xrge0iifiso  33934  orvcgteel  34470  fv1stcnv  35777  fv2ndcnv  35778  wsuclem  35826  wsuclb  35829  colineardim1  36062  eldmcnv  38346  ineccnvmo  38358  alrmomorn  38359  brcnvin  38371  brxrn  38375  dfcoss3  38415  cosscnv  38417  brcoss3  38434  brcosscnv  38473  cosscnvssid3  38477  cosscnvssid4  38478  brnonrel  43602  ntrneifv2  44093  glbprlem  48862  gte-lte  49243  gt-lt  49244
  Copyright terms: Public domain W3C validator