| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5111 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5110 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5646 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5499 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 ◡ccnv 5637 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-cnv 5646 |
| This theorem is referenced by: opelcnvg 5844 brcnv 5846 brelrng 5905 elinisegg 6064 relbrcnvg 6076 brcodir 6092 predep 6303 dffv2 6956 ersym 8683 brdifun 8701 eqinf 9436 inflb 9441 infglb 9442 infglbb 9443 infltoreq 9455 infempty 9460 brcnvtrclfv 14969 oduleg 18251 posglbdg 18374 znleval 21464 slenlt 27664 brbtwn 28826 fcoinvbr 32534 cnvordtrestixx 33903 xrge0iifiso 33925 orvcgteel 34459 fv1stcnv 35764 fv2ndcnv 35765 wsuclem 35813 wsuclb 35816 colineardim1 36049 eldmcnv 38327 ineccnvmo 38339 alrmomorn 38340 brcnvin 38352 brxrn 38356 dfcoss3 38405 cosscnv 38407 brcoss3 38424 brcosscnv 38463 cosscnvssid3 38467 cosscnvssid4 38468 brnonrel 43578 ntrneifv2 44069 glbprlem 48953 gte-lte 49713 gt-lt 49714 |
| Copyright terms: Public domain | W3C validator |