Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
Ref | Expression |
---|---|
brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5074 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 5073 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
3 | df-cnv 5588 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
4 | 1, 2, 3 | brabg 5445 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∈ wcel 2108 class class class wbr 5070 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-cnv 5588 |
This theorem is referenced by: opelcnvg 5778 brcnv 5780 brelrng 5839 elinisegg 5990 relbrcnvg 6002 brcodir 6013 predep 6222 dffv2 6845 ersym 8468 brdifun 8485 eqinf 9173 inflb 9178 infglb 9179 infglbb 9180 infltoreq 9191 infempty 9196 brcnvtrclfv 14642 oduleg 17924 posglbdg 18048 znleval 20674 brbtwn 27170 fcoinvbr 30848 cnvordtrestixx 31765 xrge0iifiso 31787 orvcgteel 32334 fv1stcnv 33657 fv2ndcnv 33658 wsuclem 33746 wsuclb 33749 slenlt 33882 colineardim1 34290 eldmcnv 36407 ineccnvmo 36416 alrmomorn 36417 brxrn 36431 dfcoss3 36467 brcoss3 36483 brcosscnv 36517 cosscnvssid3 36521 cosscnvssid4 36522 brnonrel 41086 ntrneifv2 41579 glbprlem 46147 gte-lte 46312 gt-lt 46313 |
Copyright terms: Public domain | W3C validator |