| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5113 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5649 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5502 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5110 ◡ccnv 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-cnv 5649 |
| This theorem is referenced by: opelcnvg 5847 brcnv 5849 brelrng 5908 elinisegg 6067 relbrcnvg 6079 brcodir 6095 predep 6306 dffv2 6959 ersym 8686 brdifun 8704 eqinf 9443 inflb 9448 infglb 9449 infglbb 9450 infltoreq 9462 infempty 9467 brcnvtrclfv 14976 oduleg 18258 posglbdg 18381 znleval 21471 slenlt 27671 brbtwn 28833 fcoinvbr 32541 cnvordtrestixx 33910 xrge0iifiso 33932 orvcgteel 34466 fv1stcnv 35771 fv2ndcnv 35772 wsuclem 35820 wsuclb 35823 colineardim1 36056 eldmcnv 38334 ineccnvmo 38346 alrmomorn 38347 brcnvin 38359 brxrn 38363 dfcoss3 38412 cosscnv 38414 brcoss3 38431 brcosscnv 38470 cosscnvssid3 38474 cosscnvssid4 38475 brnonrel 43585 ntrneifv2 44076 glbprlem 48957 gte-lte 49717 gt-lt 49718 |
| Copyright terms: Public domain | W3C validator |