![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version |
Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
Ref | Expression |
---|---|
brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
2 | breq1 5169 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
3 | df-cnv 5708 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
4 | 1, 2, 3 | brabg 5558 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2108 class class class wbr 5166 ◡ccnv 5699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-cnv 5708 |
This theorem is referenced by: opelcnvg 5905 brcnv 5907 brelrng 5966 elinisegg 6123 relbrcnvg 6135 brcodir 6151 predep 6362 dffv2 7017 ersym 8775 brdifun 8793 eqinf 9553 inflb 9558 infglb 9559 infglbb 9560 infltoreq 9571 infempty 9576 brcnvtrclfv 15052 oduleg 18360 posglbdg 18485 znleval 21596 slenlt 27815 brbtwn 28932 fcoinvbr 32627 cnvordtrestixx 33859 xrge0iifiso 33881 orvcgteel 34432 fv1stcnv 35740 fv2ndcnv 35741 wsuclem 35789 wsuclb 35792 colineardim1 36025 eldmcnv 38301 ineccnvmo 38313 alrmomorn 38314 brcnvin 38326 brxrn 38330 dfcoss3 38370 cosscnv 38372 brcoss3 38389 brcosscnv 38428 cosscnvssid3 38432 cosscnvssid4 38433 brnonrel 43551 ntrneifv2 44042 glbprlem 48645 gte-lte 48816 gt-lt 48817 |
Copyright terms: Public domain | W3C validator |