| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5105 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5639 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5494 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: opelcnvg 5834 brcnv 5836 brelrng 5894 elinisegg 6053 relbrcnvg 6065 brcodir 6080 predep 6291 dffv2 6938 ersym 8660 brdifun 8678 eqinf 9412 inflb 9417 infglb 9418 infglbb 9419 infltoreq 9431 infempty 9436 brcnvtrclfv 14946 oduleg 18232 posglbdg 18355 znleval 21497 slenlt 27698 brbtwn 28880 fcoinvbr 32585 cnvordtrestixx 33897 xrge0iifiso 33919 orvcgteel 34453 fv1stcnv 35758 fv2ndcnv 35759 wsuclem 35807 wsuclb 35810 colineardim1 36043 eldmcnv 38321 ineccnvmo 38333 alrmomorn 38334 brcnvin 38346 brxrn 38350 dfcoss3 38399 cosscnv 38401 brcoss3 38418 brcosscnv 38457 cosscnvssid3 38461 cosscnvssid4 38462 brnonrel 43572 ntrneifv2 44063 glbprlem 48947 gte-lte 49707 gt-lt 49708 |
| Copyright terms: Public domain | W3C validator |