| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5106 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5105 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5639 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5494 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5102 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: opelcnvg 5835 brcnv 5837 brelrng 5895 elinisegg 6054 relbrcnvg 6066 brcodir 6081 predep 6292 dffv2 6939 ersym 8661 brdifun 8679 eqinf 9413 inflb 9418 infglb 9419 infglbb 9420 infltoreq 9432 infempty 9437 brcnvtrclfv 14947 oduleg 18233 posglbdg 18356 znleval 21498 slenlt 27699 brbtwn 28881 fcoinvbr 32586 cnvordtrestixx 33898 xrge0iifiso 33920 orvcgteel 34454 fv1stcnv 35759 fv2ndcnv 35760 wsuclem 35808 wsuclb 35811 colineardim1 36044 eldmcnv 38322 ineccnvmo 38334 alrmomorn 38335 brcnvin 38347 brxrn 38351 dfcoss3 38400 cosscnv 38402 brcoss3 38419 brcosscnv 38458 cosscnvssid3 38462 cosscnvssid4 38463 brnonrel 43573 ntrneifv2 44064 glbprlem 48948 gte-lte 49708 gt-lt 49709 |
| Copyright terms: Public domain | W3C validator |