| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5128 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5127 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5667 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5519 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5124 ◡ccnv 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-cnv 5667 |
| This theorem is referenced by: opelcnvg 5865 brcnv 5867 brelrng 5926 elinisegg 6085 relbrcnvg 6097 brcodir 6113 predep 6324 dffv2 6979 ersym 8736 brdifun 8754 eqinf 9502 inflb 9507 infglb 9508 infglbb 9509 infltoreq 9521 infempty 9526 brcnvtrclfv 15027 oduleg 18307 posglbdg 18430 znleval 21520 slenlt 27721 brbtwn 28883 fcoinvbr 32591 cnvordtrestixx 33949 xrge0iifiso 33971 orvcgteel 34505 fv1stcnv 35799 fv2ndcnv 35800 wsuclem 35848 wsuclb 35851 colineardim1 36084 eldmcnv 38368 ineccnvmo 38380 alrmomorn 38381 brcnvin 38393 brxrn 38397 dfcoss3 38437 cosscnv 38439 brcoss3 38456 brcosscnv 38495 cosscnvssid3 38499 cosscnvssid4 38500 brnonrel 43580 ntrneifv2 44071 glbprlem 48906 gte-lte 49555 gt-lt 49556 |
| Copyright terms: Public domain | W3C validator |