| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > brcnvg | Structured version Visualization version GIF version | ||
| Description: The converse of a binary relation swaps arguments. Theorem 11 of [Suppes] p. 61. (Contributed by NM, 10-Oct-2005.) |
| Ref | Expression |
|---|---|
| brcnvg | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5096 | . 2 ⊢ (𝑥 = 𝐴 → (𝑦𝑅𝑥 ↔ 𝑦𝑅𝐴)) | |
| 2 | breq1 5095 | . 2 ⊢ (𝑦 = 𝐵 → (𝑦𝑅𝐴 ↔ 𝐵𝑅𝐴)) | |
| 3 | df-cnv 5627 | . 2 ⊢ ◡𝑅 = {〈𝑥, 𝑦〉 ∣ 𝑦𝑅𝑥} | |
| 4 | 1, 2, 3 | brabg 5482 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴◡𝑅𝐵 ↔ 𝐵𝑅𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5092 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-cnv 5627 |
| This theorem is referenced by: opelcnvg 5823 brcnv 5825 brelrng 5883 elinisegg 6044 relbrcnvg 6056 brcodir 6068 predep 6278 dffv2 6918 ersym 8637 brdifun 8655 eqinf 9375 inflb 9380 infglb 9381 infglbb 9382 infltoreq 9394 infempty 9399 brcnvtrclfv 14910 oduleg 18196 posglbdg 18319 znleval 21461 slenlt 27662 brbtwn 28848 fcoinvbr 32554 cnvordtrestixx 33896 xrge0iifiso 33918 orvcgteel 34452 fv1stcnv 35770 fv2ndcnv 35771 wsuclem 35819 wsuclb 35822 colineardim1 36055 eldmcnv 38333 ineccnvmo 38345 alrmomorn 38346 brcnvin 38358 brxrn 38362 dfcoss3 38411 cosscnv 38413 brcoss3 38430 brcosscnv 38469 cosscnvssid3 38473 cosscnvssid4 38474 brnonrel 43582 ntrneifv2 44073 glbprlem 48969 gte-lte 49729 gt-lt 49730 |
| Copyright terms: Public domain | W3C validator |