![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > csbcnvgALT | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnv 5873 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbcnvgALT | ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 5192 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦) | |
2 | csbconstg 3904 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) | |
3 | csbconstg 3904 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 2, 3 | breq12d 5151 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 1, 4 | bitrid 283 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | opabbidv 5204 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
7 | csbopabgALT 5546 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦}) | |
8 | df-cnv 5674 | . . . 4 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
10 | 6, 7, 9 | 3eqtr4rd 2775 | . 2 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}) |
11 | df-cnv 5674 | . . 3 ⊢ ◡𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} | |
12 | 11 | csbeq2i 3893 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} |
13 | 10, 12 | eqtr4di 2782 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 [wsbc 3769 ⦋csb 3885 class class class wbr 5138 {copab 5200 ◡ccnv 5665 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-sn 4621 df-pr 4623 df-op 4627 df-br 5139 df-opab 5201 df-cnv 5674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |