Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbcnvgALT | Structured version Visualization version GIF version |
Description: Move class substitution in and out of the converse of a relation. Version of csbcnv 5789 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
csbcnvgALT | ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sbcbr123 5132 | . . . . 5 ⊢ ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ ⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦) | |
2 | csbconstg 3855 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑧 = 𝑧) | |
3 | csbconstg 3855 | . . . . . 6 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌𝑦 = 𝑦) | |
4 | 2, 3 | breq12d 5091 | . . . . 5 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑧⦋𝐴 / 𝑥⦌𝐹⦋𝐴 / 𝑥⦌𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
5 | 1, 4 | syl5bb 282 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦 ↔ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦)) |
6 | 5 | opabbidv 5144 | . . 3 ⊢ (𝐴 ∈ 𝑉 → {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
7 | csbopabgALT 5470 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} = {〈𝑦, 𝑧〉 ∣ [𝐴 / 𝑥]𝑧𝐹𝑦}) | |
8 | df-cnv 5596 | . . . 4 ⊢ ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦} | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧⦋𝐴 / 𝑥⦌𝐹𝑦}) |
10 | 6, 7, 9 | 3eqtr4rd 2790 | . 2 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦}) |
11 | df-cnv 5596 | . . 3 ⊢ ◡𝐹 = {〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} | |
12 | 11 | csbeq2i 3844 | . 2 ⊢ ⦋𝐴 / 𝑥⦌◡𝐹 = ⦋𝐴 / 𝑥⦌{〈𝑦, 𝑧〉 ∣ 𝑧𝐹𝑦} |
13 | 10, 12 | eqtr4di 2797 | 1 ⊢ (𝐴 ∈ 𝑉 → ◡⦋𝐴 / 𝑥⦌𝐹 = ⦋𝐴 / 𝑥⦌◡𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2109 [wsbc 3719 ⦋csb 3836 class class class wbr 5078 {copab 5140 ◡ccnv 5587 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-br 5079 df-opab 5141 df-cnv 5596 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |