MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcnvgALT Structured version   Visualization version   GIF version

Theorem csbcnvgALT 5909
Description: Move class substitution in and out of the converse of a relation. Version of csbcnv 5908 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbcnvgALT (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)

Proof of Theorem csbcnvgALT
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbr123 5220 . . . . 5 ([𝐴 / 𝑥]𝑧𝐹𝑦𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
2 csbconstg 3940 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
3 csbconstg 3940 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
42, 3breq12d 5179 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑧𝐴 / 𝑥𝐹𝑦))
51, 4bitrid 283 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦𝑧𝐴 / 𝑥𝐹𝑦))
65opabbidv 5232 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
7 csbopabgALT 5575 . . 3 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦})
8 df-cnv 5708 . . . 4 𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦}
98a1i 11 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
106, 7, 93eqtr4rd 2791 . 2 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦})
11 df-cnv 5708 . . 3 𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1211csbeq2i 3929 . 2 𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1310, 12eqtr4di 2798 1 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  [wsbc 3804  csb 3921   class class class wbr 5166  {copab 5228  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-cnv 5708
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator