MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbcnvgALT Structured version   Visualization version   GIF version

Theorem csbcnvgALT 5819
Description: Move class substitution in and out of the converse of a relation. Version of csbcnv 5818 with a sethood antecedent but depending on fewer axioms. (Contributed by Thierry Arnoux, 8-Feb-2017.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
csbcnvgALT (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)

Proof of Theorem csbcnvgALT
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sbcbr123 5140 . . . . 5 ([𝐴 / 𝑥]𝑧𝐹𝑦𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦)
2 csbconstg 3864 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑧 = 𝑧)
3 csbconstg 3864 . . . . . 6 (𝐴𝑉𝐴 / 𝑥𝑦 = 𝑦)
42, 3breq12d 5099 . . . . 5 (𝐴𝑉 → (𝐴 / 𝑥𝑧𝐴 / 𝑥𝐹𝐴 / 𝑥𝑦𝑧𝐴 / 𝑥𝐹𝑦))
51, 4bitrid 283 . . . 4 (𝐴𝑉 → ([𝐴 / 𝑥]𝑧𝐹𝑦𝑧𝐴 / 𝑥𝐹𝑦))
65opabbidv 5152 . . 3 (𝐴𝑉 → {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
7 csbopabgALT 5491 . . 3 (𝐴𝑉𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦} = {⟨𝑦, 𝑧⟩ ∣ [𝐴 / 𝑥]𝑧𝐹𝑦})
8 df-cnv 5619 . . . 4 𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦}
98a1i 11 . . 3 (𝐴𝑉𝐴 / 𝑥𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐴 / 𝑥𝐹𝑦})
106, 7, 93eqtr4rd 2777 . 2 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦})
11 df-cnv 5619 . . 3 𝐹 = {⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1211csbeq2i 3853 . 2 𝐴 / 𝑥𝐹 = 𝐴 / 𝑥{⟨𝑦, 𝑧⟩ ∣ 𝑧𝐹𝑦}
1310, 12eqtr4di 2784 1 (𝐴𝑉𝐴 / 𝑥𝐹 = 𝐴 / 𝑥𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  [wsbc 3736  csb 3845   class class class wbr 5086  {copab 5148  ccnv 5610
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-br 5087  df-opab 5149  df-cnv 5619
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator