| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvun | Structured version Visualization version GIF version | ||
| Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvun | ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-cnv 5639 | . . 3 ⊢ ◡(𝐴 ∪ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} | |
| 2 | unopab 5182 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} | |
| 3 | brun 5153 | . . . . 5 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
| 4 | 3 | opabbii 5169 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} |
| 5 | 2, 4 | eqtr4i 2755 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} |
| 6 | 1, 5 | eqtr4i 2755 | . 2 ⊢ ◡(𝐴 ∪ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 7 | df-cnv 5639 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
| 8 | df-cnv 5639 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
| 9 | 7, 8 | uneq12i 4125 | . 2 ⊢ (◡𝐴 ∪ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
| 10 | 6, 9 | eqtr4i 2755 | 1 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∪ cun 3909 class class class wbr 5102 {copab 5164 ◡ccnv 5630 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-br 5103 df-opab 5165 df-cnv 5639 |
| This theorem is referenced by: rnun 6106 funcnvpr 6562 funcnvtp 6563 funcnvqp 6564 f1oun 6801 f1oprswap 6826 suppun 8140 sbthlem8 9035 domss2 9077 cnvfi 9117 1sdomOLD 9172 fsuppun 9314 fpwwe2lem12 10571 trclublem 14937 mbfres2 25522 ex-cnv 30339 suppun2 32580 cnvprop 32592 padct 32616 cycpmconjslem2 33085 eulerpartlemt 34335 mthmpps 35542 clcnvlem 43585 frege131d 43726 |
| Copyright terms: Public domain | W3C validator |