Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvun | Structured version Visualization version GIF version |
Description: The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvun | ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnv 5597 | . . 3 ⊢ ◡(𝐴 ∪ 𝐵) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} | |
2 | unopab 5156 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} | |
3 | brun 5125 | . . . . 5 ⊢ (𝑦(𝐴 ∪ 𝐵)𝑥 ↔ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)) | |
4 | 3 | opabbii 5141 | . . . 4 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} = {〈𝑥, 𝑦〉 ∣ (𝑦𝐴𝑥 ∨ 𝑦𝐵𝑥)} |
5 | 2, 4 | eqtr4i 2769 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) = {〈𝑥, 𝑦〉 ∣ 𝑦(𝐴 ∪ 𝐵)𝑥} |
6 | 1, 5 | eqtr4i 2769 | . 2 ⊢ ◡(𝐴 ∪ 𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
7 | df-cnv 5597 | . . 3 ⊢ ◡𝐴 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} | |
8 | df-cnv 5597 | . . 3 ⊢ ◡𝐵 = {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥} | |
9 | 7, 8 | uneq12i 4095 | . 2 ⊢ (◡𝐴 ∪ ◡𝐵) = ({〈𝑥, 𝑦〉 ∣ 𝑦𝐴𝑥} ∪ {〈𝑥, 𝑦〉 ∣ 𝑦𝐵𝑥}) |
10 | 6, 9 | eqtr4i 2769 | 1 ⊢ ◡(𝐴 ∪ 𝐵) = (◡𝐴 ∪ ◡𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1539 ∪ cun 3885 class class class wbr 5074 {copab 5136 ◡ccnv 5588 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-un 3892 df-br 5075 df-opab 5137 df-cnv 5597 |
This theorem is referenced by: rnun 6049 funcnvpr 6496 funcnvtp 6497 funcnvqp 6498 f1oun 6735 f1oprswap 6760 suppun 8000 sbthlem8 8877 domss2 8923 cnvfi 8963 1sdom 9025 fsuppun 9147 fpwwe2lem12 10398 trclublem 14706 mbfres2 24809 ex-cnv 28801 cnvprop 31029 padct 31054 cycpmconjslem2 31422 eulerpartlemt 32338 mthmpps 33544 clcnvlem 41231 frege131d 41372 |
Copyright terms: Public domain | W3C validator |