MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvi Structured version   Visualization version   GIF version

Theorem cnvi 6130
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi I = I

Proof of Theorem cnvi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3463 . . . . 5 𝑥 ∈ V
21ideq 5832 . . . 4 (𝑦 I 𝑥𝑦 = 𝑥)
3 equcom 2017 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
42, 3bitri 275 . . 3 (𝑦 I 𝑥𝑥 = 𝑦)
54opabbii 5186 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
6 df-cnv 5662 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥}
7 df-id 5548 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
85, 6, 73eqtr4i 2768 1 I = I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   class class class wbr 5119  {copab 5181   I cid 5547  ccnv 5653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662
This theorem is referenced by:  coi2  6252  funi  6568  cnvresid  6615  fcoi1  6752  ssdomg  9014  mbfid  25588  mthmpps  35604  brid  38324  extid  38328  cosscnvid  38499  idsymrel  38579
  Copyright terms: Public domain W3C validator