| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvi | Structured version Visualization version GIF version | ||
| Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvi | ⊢ ◡ I = I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ideq 5795 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
| 3 | equcom 2018 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
| 5 | 4 | opabbii 5159 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| 6 | df-cnv 5627 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
| 7 | df-id 5514 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4i 2762 | 1 ⊢ ◡ I = I |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5092 {copab 5154 I cid 5513 ◡ccnv 5618 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 |
| This theorem is referenced by: coi2 6212 funi 6514 cnvresid 6561 fcoi1 6698 ssdomg 8925 mbfid 25534 mthmpps 35565 brid 38290 extid 38294 cosscnvid 38468 idsymrel 38548 |
| Copyright terms: Public domain | W3C validator |