| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvi | Structured version Visualization version GIF version | ||
| Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvi | ⊢ ◡ I = I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3463 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ideq 5832 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
| 3 | equcom 2017 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
| 5 | 4 | opabbii 5186 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| 6 | df-cnv 5662 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
| 7 | df-id 5548 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4i 2768 | 1 ⊢ ◡ I = I |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 class class class wbr 5119 {copab 5181 I cid 5547 ◡ccnv 5653 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 |
| This theorem is referenced by: coi2 6252 funi 6568 cnvresid 6615 fcoi1 6752 ssdomg 9014 mbfid 25588 mthmpps 35604 brid 38324 extid 38328 cosscnvid 38499 idsymrel 38579 |
| Copyright terms: Public domain | W3C validator |