![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cnvi | Structured version Visualization version GIF version |
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvi | ⊢ ◡ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3479 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | ideq 5850 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
3 | equcom 2022 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
5 | 4 | opabbii 5214 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | df-cnv 5683 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
7 | df-id 5573 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
8 | 5, 6, 7 | 3eqtr4i 2771 | 1 ⊢ ◡ I = I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 class class class wbr 5147 {copab 5209 I cid 5572 ◡ccnv 5674 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-br 5148 df-opab 5210 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 |
This theorem is referenced by: coi2 6259 funi 6577 cnvresid 6624 fcoi1 6762 ssdomg 8992 mbfid 25134 mthmpps 34511 brid 37113 extid 37117 cosscnvid 37289 idsymrel 37369 |
Copyright terms: Public domain | W3C validator |