MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvi Structured version   Visualization version   GIF version

Theorem cnvi 6173
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi I = I

Proof of Theorem cnvi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3492 . . . . 5 𝑥 ∈ V
21ideq 5877 . . . 4 (𝑦 I 𝑥𝑦 = 𝑥)
3 equcom 2017 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
42, 3bitri 275 . . 3 (𝑦 I 𝑥𝑥 = 𝑦)
54opabbii 5233 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
6 df-cnv 5708 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥}
7 df-id 5593 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
85, 6, 73eqtr4i 2778 1 I = I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537   class class class wbr 5166  {copab 5228   I cid 5592  ccnv 5699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708
This theorem is referenced by:  coi2  6294  funi  6610  cnvresid  6657  fcoi1  6795  ssdomg  9060  mbfid  25689  mthmpps  35550  brid  38262  extid  38266  cosscnvid  38437  idsymrel  38517
  Copyright terms: Public domain W3C validator