MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnvi Structured version   Visualization version   GIF version

Theorem cnvi 6102
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
cnvi I = I

Proof of Theorem cnvi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3448 . . . . 5 𝑥 ∈ V
21ideq 5806 . . . 4 (𝑦 I 𝑥𝑦 = 𝑥)
3 equcom 2018 . . . 4 (𝑦 = 𝑥𝑥 = 𝑦)
42, 3bitri 275 . . 3 (𝑦 I 𝑥𝑥 = 𝑦)
54opabbii 5169 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥} = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
6 df-cnv 5639 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑦 I 𝑥}
7 df-id 5526 . 2 I = {⟨𝑥, 𝑦⟩ ∣ 𝑥 = 𝑦}
85, 6, 73eqtr4i 2762 1 I = I
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   class class class wbr 5102  {copab 5164   I cid 5525  ccnv 5630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639
This theorem is referenced by:  coi2  6224  funi  6532  cnvresid  6579  fcoi1  6716  ssdomg  8948  mbfid  25569  mthmpps  35562  brid  38287  extid  38291  cosscnvid  38465  idsymrel  38545
  Copyright terms: Public domain W3C validator