| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cnvi | Structured version Visualization version GIF version | ||
| Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
| Ref | Expression |
|---|---|
| cnvi | ⊢ ◡ I = I |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 2 | 1 | ideq 5791 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
| 3 | equcom 2019 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
| 4 | 2, 3 | bitri 275 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
| 5 | 4 | opabbii 5156 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
| 6 | df-cnv 5622 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
| 7 | df-id 5509 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
| 8 | 5, 6, 7 | 3eqtr4i 2764 | 1 ⊢ ◡ I = I |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 class class class wbr 5089 {copab 5151 I cid 5508 ◡ccnv 5613 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 |
| This theorem is referenced by: coi2 6211 funi 6513 cnvresid 6560 fcoi1 6697 ssdomg 8922 mbfid 25563 mthmpps 35626 brid 38354 extid 38358 cosscnvid 38593 idsymrel 38667 |
| Copyright terms: Public domain | W3C validator |