Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cnvi | Structured version Visualization version GIF version |
Description: The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
cnvi | ⊢ ◡ I = I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3426 | . . . . 5 ⊢ 𝑥 ∈ V | |
2 | 1 | ideq 5750 | . . . 4 ⊢ (𝑦 I 𝑥 ↔ 𝑦 = 𝑥) |
3 | equcom 2022 | . . . 4 ⊢ (𝑦 = 𝑥 ↔ 𝑥 = 𝑦) | |
4 | 2, 3 | bitri 274 | . . 3 ⊢ (𝑦 I 𝑥 ↔ 𝑥 = 𝑦) |
5 | 4 | opabbii 5137 | . 2 ⊢ {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} |
6 | df-cnv 5588 | . 2 ⊢ ◡ I = {〈𝑥, 𝑦〉 ∣ 𝑦 I 𝑥} | |
7 | df-id 5480 | . 2 ⊢ I = {〈𝑥, 𝑦〉 ∣ 𝑥 = 𝑦} | |
8 | 5, 6, 7 | 3eqtr4i 2776 | 1 ⊢ ◡ I = I |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 class class class wbr 5070 {copab 5132 I cid 5479 ◡ccnv 5579 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 |
This theorem is referenced by: coi2 6156 funi 6450 cnvresid 6497 fcoi1 6632 ssdomg 8741 mbfid 24704 mthmpps 33444 brid 36369 extid 36373 cosscnvid 36526 idsymrel 36602 |
Copyright terms: Public domain | W3C validator |