Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartdisj Structured version   Visualization version   GIF version

Theorem iccpartdisj 43954
Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartdisj (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartdisj
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1915 . . . . 5 𝑖𝜑
2 nfreu1 3323 . . . . 5 𝑖∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))
3 simpl 486 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝜑)
4 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
54adantr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
6 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
76adantr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
8 nnnn0 11892 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
9 0elfz 12999 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
104, 8, 93syl 18 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
1110adantr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ (0...𝑀))
125, 7, 11iccpartxr 43936 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ∈ ℝ*)
13 nn0fz0 13000 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1413biimpi 219 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
154, 8, 143syl 18 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
1615adantr 484 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...𝑀))
175, 7, 16iccpartxr 43936 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
184, 6iccpartgel 43946 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
19 elfzofz 13048 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2019adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
21 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
2221breq2d 5042 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
2322rspcv 3566 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2420, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2524ex 416 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖))))
2618, 25mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
2726imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
284, 6iccpartleu 43945 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀))
29 fzofzp1 13129 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
3029adantl 485 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31 fveq2 6645 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑃𝑗) = (𝑃‘(𝑖 + 1)))
3231breq1d 5040 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑃𝑗) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3332rspcv 3566 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3430, 33syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3534ex 416 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))))
3628, 35mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3736imp 410 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
38 icossico 12795 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
3912, 17, 27, 37, 38syl22anc 837 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4039sseld 3914 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
414, 6icceuelpart 43953 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
423, 40, 41syl6an 683 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4342ex 416 . . . . 5 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
441, 2, 43rexlimd 3276 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 rmo5 3379 . . . 4 (∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4644, 45sylibr 237 . . 3 (𝜑 → ∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4746alrimiv 1928 . 2 (𝜑 → ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
48 df-disj 4996 . 2 (Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4947, 48sylibr 237 1 (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1536   = wceq 1538  wcel 2111  wral 3106  wrex 3107  ∃!wreu 3108  ∃*wrmo 3109  wss 3881  Disj wdisj 4995   class class class wbr 5030  cfv 6324  (class class class)co 7135  0cc0 10526  1c1 10527   + caddc 10529  *cxr 10663  cle 10665  cn 11625  0cn0 11885  [,)cico 12728  ...cfz 12885  ..^cfzo 13028  RePartciccp 43930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-disj 4996  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-z 11970  df-uz 12232  df-ico 12732  df-fz 12886  df-fzo 13029  df-iccp 43931
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator