Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartdisj Structured version   Visualization version   GIF version

Theorem iccpartdisj 42213
Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartdisj (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartdisj
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 2010 . . . . 5 𝑖𝜑
2 nfreu1 3291 . . . . 5 𝑖∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))
3 simpl 475 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝜑)
4 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
54adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
6 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
76adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
8 nnnn0 11588 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
9 0elfz 12691 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
104, 8, 93syl 18 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
1110adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ (0...𝑀))
125, 7, 11iccpartxr 42195 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ∈ ℝ*)
13 nn0fz0 12692 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1413biimpi 208 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
154, 8, 143syl 18 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
1615adantr 473 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...𝑀))
175, 7, 16iccpartxr 42195 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
184, 6iccpartgel 42205 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
19 elfzofz 12740 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2019adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
21 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
2221breq2d 4855 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
2322rspcv 3493 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2420, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2524ex 402 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖))))
2618, 25mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
2726imp 396 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
284, 6iccpartleu 42204 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀))
29 fzofzp1 12820 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
3029adantl 474 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31 fveq2 6411 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑃𝑗) = (𝑃‘(𝑖 + 1)))
3231breq1d 4853 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑃𝑗) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3332rspcv 3493 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3430, 33syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3534ex 402 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))))
3628, 35mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3736imp 396 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
38 icossico 12492 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
3912, 17, 27, 37, 38syl22anc 868 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4039sseld 3797 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
414, 6icceuelpart 42212 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
423, 40, 41syl6an 675 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4342ex 402 . . . . 5 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
441, 2, 43rexlimd 3207 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 rmo5 3345 . . . 4 (∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4644, 45sylibr 226 . . 3 (𝜑 → ∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4746alrimiv 2023 . 2 (𝜑 → ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
48 df-disj 4812 . 2 (Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4947, 48sylibr 226 1 (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385  wal 1651   = wceq 1653  wcel 2157  wral 3089  wrex 3090  ∃!wreu 3091  ∃*wrmo 3092  wss 3769  Disj wdisj 4811   class class class wbr 4843  cfv 6101  (class class class)co 6878  0cc0 10224  1c1 10225   + caddc 10227  *cxr 10362  cle 10364  cn 11312  0cn0 11580  [,)cico 12426  ...cfz 12580  ..^cfzo 12720  RePartciccp 42189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-iun 4712  df-disj 4812  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-er 7982  df-map 8097  df-en 8196  df-dom 8197  df-sdom 8198  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-z 11667  df-uz 11931  df-ico 12430  df-fz 12581  df-fzo 12721  df-iccp 42190
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator