Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartdisj Structured version   Visualization version   GIF version

Theorem iccpartdisj 47418
Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartdisj (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartdisj
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . . . 5 𝑖𝜑
2 nfreu1 3396 . . . . 5 𝑖∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))
3 simpl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝜑)
4 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
6 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
76adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
8 nnnn0 12513 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
9 0elfz 13646 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
104, 8, 93syl 18 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
1110adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ (0...𝑀))
125, 7, 11iccpartxr 47400 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ∈ ℝ*)
13 nn0fz0 13647 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1413biimpi 216 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
154, 8, 143syl 18 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
1615adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...𝑀))
175, 7, 16iccpartxr 47400 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
184, 6iccpartgel 47410 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
19 elfzofz 13697 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2019adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
21 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
2221breq2d 5136 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
2322rspcv 3602 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2420, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2524ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖))))
2618, 25mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
2726imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
284, 6iccpartleu 47409 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀))
29 fzofzp1 13785 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
3029adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31 fveq2 6881 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑃𝑗) = (𝑃‘(𝑖 + 1)))
3231breq1d 5134 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑃𝑗) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3332rspcv 3602 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3430, 33syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3534ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))))
3628, 35mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3736imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
38 icossico 13438 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
3912, 17, 27, 37, 38syl22anc 838 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4039sseld 3962 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
414, 6icceuelpart 47417 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
423, 40, 41syl6an 684 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4342ex 412 . . . . 5 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
441, 2, 43rexlimd 3253 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 rmo5 3384 . . . 4 (∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4644, 45sylibr 234 . . 3 (𝜑 → ∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4746alrimiv 1927 . 2 (𝜑 → ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
48 df-disj 5092 . 2 (Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4947, 48sylibr 234 1 (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3052  wrex 3061  ∃!wreu 3362  ∃*wrmo 3363  wss 3931  Disj wdisj 5091   class class class wbr 5124  cfv 6536  (class class class)co 7410  0cc0 11134  1c1 11135   + caddc 11137  *cxr 11273  cle 11275  cn 12245  0cn0 12506  [,)cico 13369  ...cfz 13529  ..^cfzo 13676  RePartciccp 47394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-n0 12507  df-z 12594  df-uz 12858  df-ico 13373  df-fz 13530  df-fzo 13677  df-iccp 47395
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator