Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartdisj Structured version   Visualization version   GIF version

Theorem iccpartdisj 44777
Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartdisj (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartdisj
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1918 . . . . 5 𝑖𝜑
2 nfreu1 3296 . . . . 5 𝑖∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))
3 simpl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝜑)
4 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
6 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
76adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
8 nnnn0 12170 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
9 0elfz 13282 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
104, 8, 93syl 18 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
1110adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ (0...𝑀))
125, 7, 11iccpartxr 44759 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ∈ ℝ*)
13 nn0fz0 13283 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1413biimpi 215 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
154, 8, 143syl 18 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
1615adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...𝑀))
175, 7, 16iccpartxr 44759 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
184, 6iccpartgel 44769 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
19 elfzofz 13331 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2019adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
21 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
2221breq2d 5082 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
2322rspcv 3547 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2420, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2524ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖))))
2618, 25mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
2726imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
284, 6iccpartleu 44768 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀))
29 fzofzp1 13412 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
3029adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31 fveq2 6756 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑃𝑗) = (𝑃‘(𝑖 + 1)))
3231breq1d 5080 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑃𝑗) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3332rspcv 3547 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3430, 33syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3534ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))))
3628, 35mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3736imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
38 icossico 13078 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
3912, 17, 27, 37, 38syl22anc 835 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4039sseld 3916 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
414, 6icceuelpart 44776 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
423, 40, 41syl6an 680 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4342ex 412 . . . . 5 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
441, 2, 43rexlimd 3245 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 rmo5 3355 . . . 4 (∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4644, 45sylibr 233 . . 3 (𝜑 → ∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4746alrimiv 1931 . 2 (𝜑 → ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
48 df-disj 5036 . 2 (Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4947, 48sylibr 233 1 (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1537   = wceq 1539  wcel 2108  wral 3063  wrex 3064  ∃!wreu 3065  ∃*wrmo 3066  wss 3883  Disj wdisj 5035   class class class wbr 5070  cfv 6418  (class class class)co 7255  0cc0 10802  1c1 10803   + caddc 10805  *cxr 10939  cle 10941  cn 11903  0cn0 12163  [,)cico 13010  ...cfz 13168  ..^cfzo 13311  RePartciccp 44753
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-disj 5036  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-ico 13014  df-fz 13169  df-fzo 13312  df-iccp 44754
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator