Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iccpartdisj Structured version   Visualization version   GIF version

Theorem iccpartdisj 47311
Description: The segments of a partitioned half-open interval of extended reals are a disjoint collection. (Contributed by AV, 19-Jul-2020.)
Hypotheses
Ref Expression
iccpartiun.m (𝜑𝑀 ∈ ℕ)
iccpartiun.p (𝜑𝑃 ∈ (RePart‘𝑀))
Assertion
Ref Expression
iccpartdisj (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Distinct variable groups:   𝑖,𝑀   𝑃,𝑖   𝜑,𝑖

Proof of Theorem iccpartdisj
Dummy variables 𝑗 𝑝 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1913 . . . . 5 𝑖𝜑
2 nfreu1 3420 . . . . 5 𝑖∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))
3 simpl 482 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝜑)
4 iccpartiun.m . . . . . . . . . . 11 (𝜑𝑀 ∈ ℕ)
54adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ ℕ)
6 iccpartiun.p . . . . . . . . . . 11 (𝜑𝑃 ∈ (RePart‘𝑀))
76adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑃 ∈ (RePart‘𝑀))
8 nnnn0 12560 . . . . . . . . . . . 12 (𝑀 ∈ ℕ → 𝑀 ∈ ℕ0)
9 0elfz 13681 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0 → 0 ∈ (0...𝑀))
104, 8, 93syl 18 . . . . . . . . . . 11 (𝜑 → 0 ∈ (0...𝑀))
1110adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 0 ∈ (0...𝑀))
125, 7, 11iccpartxr 47293 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ∈ ℝ*)
13 nn0fz0 13682 . . . . . . . . . . . . 13 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
1413biimpi 216 . . . . . . . . . . . 12 (𝑀 ∈ ℕ0𝑀 ∈ (0...𝑀))
154, 8, 143syl 18 . . . . . . . . . . 11 (𝜑𝑀 ∈ (0...𝑀))
1615adantr 480 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑀 ∈ (0...𝑀))
175, 7, 16iccpartxr 47293 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃𝑀) ∈ ℝ*)
184, 6iccpartgel 47303 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗))
19 elfzofz 13732 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
2019adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
21 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑗 = 𝑖 → (𝑃𝑗) = (𝑃𝑖))
2221breq2d 5178 . . . . . . . . . . . . . 14 (𝑗 = 𝑖 → ((𝑃‘0) ≤ (𝑃𝑗) ↔ (𝑃‘0) ≤ (𝑃𝑖)))
2322rspcv 3631 . . . . . . . . . . . . 13 (𝑖 ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2420, 23syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖)))
2524ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃‘0) ≤ (𝑃𝑗) → (𝑃‘0) ≤ (𝑃𝑖))))
2618, 25mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘0) ≤ (𝑃𝑖)))
2726imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘0) ≤ (𝑃𝑖))
284, 6iccpartleu 47302 . . . . . . . . . . 11 (𝜑 → ∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀))
29 fzofzp1 13814 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
3029adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
31 fveq2 6920 . . . . . . . . . . . . . . 15 (𝑗 = (𝑖 + 1) → (𝑃𝑗) = (𝑃‘(𝑖 + 1)))
3231breq1d 5176 . . . . . . . . . . . . . 14 (𝑗 = (𝑖 + 1) → ((𝑃𝑗) ≤ (𝑃𝑀) ↔ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3332rspcv 3631 . . . . . . . . . . . . 13 ((𝑖 + 1) ∈ (0...𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3430, 33syl 17 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3534ex 412 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ (0..^𝑀) → (∀𝑗 ∈ (0...𝑀)(𝑃𝑗) ≤ (𝑃𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))))
3628, 35mpid 44 . . . . . . . . . 10 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀)))
3736imp 406 . . . . . . . . 9 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))
38 icossico 13477 . . . . . . . . 9 ((((𝑃‘0) ∈ ℝ* ∧ (𝑃𝑀) ∈ ℝ*) ∧ ((𝑃‘0) ≤ (𝑃𝑖) ∧ (𝑃‘(𝑖 + 1)) ≤ (𝑃𝑀))) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
3912, 17, 27, 37, 38syl22anc 838 . . . . . . . 8 ((𝜑𝑖 ∈ (0..^𝑀)) → ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ⊆ ((𝑃‘0)[,)(𝑃𝑀)))
4039sseld 4007 . . . . . . 7 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → 𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))))
414, 6icceuelpart 47310 . . . . . . 7 ((𝜑𝑝 ∈ ((𝑃‘0)[,)(𝑃𝑀))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
423, 40, 41syl6an 683 . . . . . 6 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4342ex 412 . . . . 5 (𝜑 → (𝑖 ∈ (0..^𝑀) → (𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))))
441, 2, 43rexlimd 3272 . . . 4 (𝜑 → (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
45 rmo5 3408 . . . 4 (∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ (∃𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) → ∃!𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1)))))
4644, 45sylibr 234 . . 3 (𝜑 → ∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4746alrimiv 1926 . 2 (𝜑 → ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
48 df-disj 5134 . 2 (Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))) ↔ ∀𝑝∃*𝑖 ∈ (0..^𝑀)𝑝 ∈ ((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
4947, 48sylibr 234 1 (𝜑Disj 𝑖 ∈ (0..^𝑀)((𝑃𝑖)[,)(𝑃‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wal 1535   = wceq 1537  wcel 2108  wral 3067  wrex 3076  ∃!wreu 3386  ∃*wrmo 3387  wss 3976  Disj wdisj 5133   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323  cle 11325  cn 12293  0cn0 12553  [,)cico 13409  ...cfz 13567  ..^cfzo 13711  RePartciccp 47287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-ico 13413  df-fz 13568  df-fzo 13712  df-iccp 47288
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator