| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | df-disj 5111 | . 2
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| 2 |  | ralcom4 3286 | . . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 3 |  | orcom 871 | . . . . . . 7
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗)) | 
| 4 |  | df-or 849 | . . . . . . 7
⊢ (((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗)) | 
| 5 |  | neq0 4352 | . . . . . . . . . 10
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶)) | 
| 6 |  | elin 3967 | . . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | 
| 7 | 6 | exbii 1848 | . . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | 
| 8 | 5, 7 | bitri 275 | . . . . . . . . 9
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) | 
| 9 | 8 | imbi1i 349 | . . . . . . . 8
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 10 |  | 19.23v 1942 | . . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 11 | 9, 10 | bitr4i 278 | . . . . . . 7
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 12 | 3, 4, 11 | 3bitri 297 | . . . . . 6
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 13 | 12 | ralbii 3093 | . . . . 5
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑗 ∈ 𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 14 |  | ralcom4 3286 | . . . . 5
⊢
(∀𝑗 ∈
𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 15 | 13, 14 | bitri 275 | . . . 4
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 16 | 15 | ralbii 3093 | . . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑖 ∈ 𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 17 |  | disjor.1 | . . . . . 6
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) | 
| 18 | 17 | eleq2d 2827 | . . . . 5
⊢ (𝑖 = 𝑗 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶)) | 
| 19 | 18 | rmo4 3736 | . . . 4
⊢
(∃*𝑖 ∈
𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 20 | 19 | albii 1819 | . . 3
⊢
(∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) | 
| 21 | 2, 16, 20 | 3bitr4i 303 | . 2
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) | 
| 22 | 1, 21 | bitr4i 278 | 1
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) |