MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjor Structured version   Visualization version   GIF version

Theorem disjor 4944
Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖𝐴 is disjoint. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 14-Nov-2016.)
Hypothesis
Ref Expression
disjor.1 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjor (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗,𝐴   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjor
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4931 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 ralcom4 3199 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
3 orcom 865 . . . . . . 7 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗))
4 df-or 843 . . . . . . 7 (((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗))
5 neq0 4229 . . . . . . . . . 10 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐶))
6 elin 4090 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76exbii 1829 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
85, 7bitri 276 . . . . . . . . 9 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
98imbi1i 351 . . . . . . . 8 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
10 19.23v 1920 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
119, 10bitr4i 279 . . . . . . 7 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
123, 4, 113bitri 298 . . . . . 6 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1312ralbii 3132 . . . . 5 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
14 ralcom4 3199 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1513, 14bitri 276 . . . 4 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1615ralbii 3132 . . 3 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
17 disjor.1 . . . . . 6 (𝑖 = 𝑗𝐵 = 𝐶)
1817eleq2d 2868 . . . . 5 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
1918rmo4 3655 . . . 4 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
2019albii 1801 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
212, 16, 203bitr4i 304 . 2 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
221, 21bitr4i 279 1 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842  wal 1520   = wceq 1522  wex 1761  wcel 2081  wral 3105  ∃*wrmo 3108  cin 3858  c0 4211  Disj wdisj 4930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ral 3110  df-rmo 3113  df-v 3439  df-dif 3862  df-in 3866  df-nul 4212  df-disj 4931
This theorem is referenced by:  disjors  4945  disjord  4951  disjiunb  4952  disjxiun  4959  disjxun  4960  otsndisj  5300  qsdisj2  8225  s3sndisj  14161  cshwsdisj  16261  dyadmbl  23884  numedglnl  26612  clwwlknondisj  27577  2wspmdisj  27808  disjnf  30010  disjorsf  30020  poimirlem26  34468  mblfinlem2  34480  ndisj2  40871  nnfoctbdjlem  42299  iundjiun  42304  otiunsndisjX  43014
  Copyright terms: Public domain W3C validator