Step | Hyp | Ref
| Expression |
1 | | df-disj 5019 |
. 2
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) |
2 | | ralcom4 3157 |
. . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
3 | | orcom 870 |
. . . . . . 7
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗)) |
4 | | df-or 848 |
. . . . . . 7
⊢ (((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗)) |
5 | | neq0 4260 |
. . . . . . . . . 10
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶)) |
6 | | elin 3882 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
7 | 6 | exbii 1855 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
8 | 5, 7 | bitri 278 |
. . . . . . . . 9
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
9 | 8 | imbi1i 353 |
. . . . . . . 8
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
10 | | 19.23v 1950 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
11 | 9, 10 | bitr4i 281 |
. . . . . . 7
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
12 | 3, 4, 11 | 3bitri 300 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
13 | 12 | ralbii 3088 |
. . . . 5
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑗 ∈ 𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
14 | | ralcom4 3157 |
. . . . 5
⊢
(∀𝑗 ∈
𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
15 | 13, 14 | bitri 278 |
. . . 4
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
16 | 15 | ralbii 3088 |
. . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑖 ∈ 𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
17 | | disjor.1 |
. . . . . 6
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) |
18 | 17 | eleq2d 2823 |
. . . . 5
⊢ (𝑖 = 𝑗 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶)) |
19 | 18 | rmo4 3643 |
. . . 4
⊢
(∃*𝑖 ∈
𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
20 | 19 | albii 1827 |
. . 3
⊢
(∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
21 | 2, 16, 20 | 3bitr4i 306 |
. 2
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) |
22 | 1, 21 | bitr4i 281 |
1
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) |