Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjss1f Structured version   Visualization version   GIF version

Theorem disjss1f 32383
Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
disjss1f.1 𝑥𝐴
disjss1f.2 𝑥𝐵
Assertion
Ref Expression
disjss1f (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))

Proof of Theorem disjss1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 disjss1f.1 . . . 4 𝑥𝐴
2 disjss1f.2 . . . 4 𝑥𝐵
31, 2ssrmof 4049 . . 3 (𝐴𝐵 → (∃*𝑥𝐵 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐶))
43alimdv 1911 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥𝐵 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐶))
5 df-disj 5118 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥𝐵 𝑦𝐶)
6 df-disj 5118 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
74, 5, 63imtr4g 295 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1531  wcel 2098  wnfc 2879  ∃*wrmo 3373  wss 3949  Disj wdisj 5117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-11 2146  ax-12 2166  ax-ext 2699
This theorem depends on definitions:  df-bi 206  df-an 395  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-rmo 3374  df-v 3475  df-in 3956  df-ss 3966  df-disj 5118
This theorem is referenced by:  disjeq1f  32384  esumrnmpt2  33720  measvuni  33866
  Copyright terms: Public domain W3C validator