Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjss1f Structured version   Visualization version   GIF version

Theorem disjss1f 30314
 Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Hypotheses
Ref Expression
disjss1f.1 𝑥𝐴
disjss1f.2 𝑥𝐵
Assertion
Ref Expression
disjss1f (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))

Proof of Theorem disjss1f
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 disjss1f.1 . . . 4 𝑥𝐴
2 disjss1f.2 . . . 4 𝑥𝐵
31, 2ssrmof 4030 . . 3 (𝐴𝐵 → (∃*𝑥𝐵 𝑦𝐶 → ∃*𝑥𝐴 𝑦𝐶))
43alimdv 1911 . 2 (𝐴𝐵 → (∀𝑦∃*𝑥𝐵 𝑦𝐶 → ∀𝑦∃*𝑥𝐴 𝑦𝐶))
5 df-disj 5023 . 2 (Disj 𝑥𝐵 𝐶 ↔ ∀𝑦∃*𝑥𝐵 𝑦𝐶)
6 df-disj 5023 . 2 (Disj 𝑥𝐴 𝐶 ↔ ∀𝑦∃*𝑥𝐴 𝑦𝐶)
74, 5, 63imtr4g 298 1 (𝐴𝐵 → (Disj 𝑥𝐵 𝐶Disj 𝑥𝐴 𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1529   ∈ wcel 2108  Ⅎwnfc 2959  ∃*wrmo 3139   ⊆ wss 3934  Disj wdisj 5022 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791 This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-rmo 3144  df-in 3941  df-ss 3950  df-disj 5023 This theorem is referenced by:  disjeq1f  30315  esumrnmpt2  31320  measvuni  31466
 Copyright terms: Public domain W3C validator