![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjss1f | Structured version Visualization version GIF version |
Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
disjss1f.1 | ⊢ Ⅎ𝑥𝐴 |
disjss1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
disjss1f | ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjss1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | disjss1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | ssrmof 4049 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
4 | 3 | alimdv 1919 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | df-disj 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
6 | df-disj 5114 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 4, 5, 6 | 3imtr4g 295 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1539 ∈ wcel 2106 Ⅎwnfc 2883 ∃*wrmo 3375 ⊆ wss 3948 Disj wdisj 5113 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-12 2171 ax-ext 2703 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1544 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-rmo 3376 df-v 3476 df-in 3955 df-ss 3965 df-disj 5114 |
This theorem is referenced by: disjeq1f 31799 esumrnmpt2 33061 measvuni 33207 |
Copyright terms: Public domain | W3C validator |