![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjss1f | Structured version Visualization version GIF version |
Description: A subset of a disjoint collection is disjoint. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
Ref | Expression |
---|---|
disjss1f.1 | ⊢ Ⅎ𝑥𝐴 |
disjss1f.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
disjss1f | ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjss1f.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | disjss1f.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | ssrmof 4076 | . . 3 ⊢ (𝐴 ⊆ 𝐵 → (∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
4 | 3 | alimdv 1915 | . 2 ⊢ (𝐴 ⊆ 𝐵 → (∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶)) |
5 | df-disj 5134 | . 2 ⊢ (Disj 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐵 𝑦 ∈ 𝐶) | |
6 | df-disj 5134 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | 4, 5, 6 | 3imtr4g 296 | 1 ⊢ (𝐴 ⊆ 𝐵 → (Disj 𝑥 ∈ 𝐵 𝐶 → Disj 𝑥 ∈ 𝐴 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1535 ∈ wcel 2108 Ⅎwnfc 2893 ∃*wrmo 3387 ⊆ wss 3976 Disj wdisj 5133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-11 2158 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-mo 2543 df-clel 2819 df-nfc 2895 df-rmo 3388 df-ss 3993 df-disj 5134 |
This theorem is referenced by: disjeq1f 32587 esumrnmpt2 34024 measvuni 34170 |
Copyright terms: Public domain | W3C validator |