Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjorf Structured version   Visualization version   GIF version

Theorem disjorf 30346
 Description: Two ways to say that a collection 𝐵(𝑖) for 𝑖 ∈ 𝐴 is disjoint. (Contributed by Thierry Arnoux, 8-Mar-2017.)
Hypotheses
Ref Expression
disjorf.1 𝑖𝐴
disjorf.2 𝑗𝐴
disjorf.3 (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
disjorf (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
Distinct variable groups:   𝑖,𝑗   𝐵,𝑗   𝐶,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑗)   𝐵(𝑖)   𝐶(𝑗)

Proof of Theorem disjorf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-disj 4999 . 2 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
2 ralcom4 3201 . . 3 (∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
3 orcom 867 . . . . . . 7 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗))
4 df-or 845 . . . . . . 7 (((𝐵𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗))
5 neq0 4262 . . . . . . . . . 10 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵𝐶))
6 elin 3900 . . . . . . . . . . 11 (𝑥 ∈ (𝐵𝐶) ↔ (𝑥𝐵𝑥𝐶))
76exbii 1849 . . . . . . . . . 10 (∃𝑥 𝑥 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
85, 7bitri 278 . . . . . . . . 9 (¬ (𝐵𝐶) = ∅ ↔ ∃𝑥(𝑥𝐵𝑥𝐶))
98imbi1i 353 . . . . . . . 8 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
10 19.23v 1943 . . . . . . . 8 (∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
119, 10bitr4i 281 . . . . . . 7 ((¬ (𝐵𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
123, 4, 113bitri 300 . . . . . 6 ((𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1312ralbii 3136 . . . . 5 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
14 ralcom4 3201 . . . . 5 (∀𝑗𝐴𝑥((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1513, 14bitri 278 . . . 4 (∀𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
1615ralbii 3136 . . 3 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑖𝐴𝑥𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
17 disjorf.1 . . . . 5 𝑖𝐴
18 disjorf.2 . . . . 5 𝑗𝐴
19 nfv 1915 . . . . 5 𝑖 𝑥𝐶
20 disjorf.3 . . . . . 6 (𝑖 = 𝑗𝐵 = 𝐶)
2120eleq2d 2878 . . . . 5 (𝑖 = 𝑗 → (𝑥𝐵𝑥𝐶))
2217, 18, 19, 21rmo4f 3677 . . . 4 (∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
2322albii 1821 . . 3 (∀𝑥∃*𝑖𝐴 𝑥𝐵 ↔ ∀𝑥𝑖𝐴𝑗𝐴 ((𝑥𝐵𝑥𝐶) → 𝑖 = 𝑗))
242, 16, 233bitr4i 306 . 2 (∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅) ↔ ∀𝑥∃*𝑖𝐴 𝑥𝐵)
251, 24bitr4i 281 1 (Disj 𝑖𝐴 𝐵 ↔ ∀𝑖𝐴𝑗𝐴 (𝑖 = 𝑗 ∨ (𝐵𝐶) = ∅))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 209   ∧ wa 399   ∨ wo 844  ∀wal 1536   = wceq 1538  ∃wex 1781   ∈ wcel 2112  Ⅎwnfc 2939  ∀wral 3109  ∃*wrmo 3112   ∩ cin 3883  ∅c0 4246  Disj wdisj 4998 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ral 3114  df-rmo 3117  df-v 3446  df-dif 3887  df-in 3891  df-nul 4247  df-disj 4999 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator