| Step | Hyp | Ref
| Expression |
| 1 | | df-disj 5093 |
. 2
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 2 | | ralcom4 3272 |
. . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 3 | | orcom 870 |
. . . . . . 7
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗)) |
| 4 | | df-or 848 |
. . . . . . 7
⊢ (((𝐵 ∩ 𝐶) = ∅ ∨ 𝑖 = 𝑗) ↔ (¬ (𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗)) |
| 5 | | neq0 4334 |
. . . . . . . . . 10
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶)) |
| 6 | | elin 3949 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐵 ∩ 𝐶) ↔ (𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| 7 | 6 | exbii 1847 |
. . . . . . . . . 10
⊢
(∃𝑥 𝑥 ∈ (𝐵 ∩ 𝐶) ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| 8 | 5, 7 | bitri 275 |
. . . . . . . . 9
⊢ (¬
(𝐵 ∩ 𝐶) = ∅ ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶)) |
| 9 | 8 | imbi1i 349 |
. . . . . . . 8
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 10 | | 19.23v 1941 |
. . . . . . . 8
⊢
(∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ (∃𝑥(𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 11 | 9, 10 | bitr4i 278 |
. . . . . . 7
⊢ ((¬
(𝐵 ∩ 𝐶) = ∅ → 𝑖 = 𝑗) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 12 | 3, 4, 11 | 3bitri 297 |
. . . . . 6
⊢ ((𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 13 | 12 | ralbii 3081 |
. . . . 5
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑗 ∈ 𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 14 | | ralcom4 3272 |
. . . . 5
⊢
(∀𝑗 ∈
𝐴 ∀𝑥((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 15 | 13, 14 | bitri 275 |
. . . 4
⊢
(∀𝑗 ∈
𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 16 | 15 | ralbii 3081 |
. . 3
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑖 ∈ 𝐴 ∀𝑥∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 17 | | disjorf.1 |
. . . . 5
⊢
Ⅎ𝑖𝐴 |
| 18 | | disjorf.2 |
. . . . 5
⊢
Ⅎ𝑗𝐴 |
| 19 | | nfv 1913 |
. . . . 5
⊢
Ⅎ𝑖 𝑥 ∈ 𝐶 |
| 20 | | disjorf.3 |
. . . . . 6
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) |
| 21 | 20 | eleq2d 2819 |
. . . . 5
⊢ (𝑖 = 𝑗 → (𝑥 ∈ 𝐵 ↔ 𝑥 ∈ 𝐶)) |
| 22 | 17, 18, 19, 21 | rmo4f 3725 |
. . . 4
⊢
(∃*𝑖 ∈
𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 23 | 22 | albii 1818 |
. . 3
⊢
(∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵 ↔ ∀𝑥∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 ((𝑥 ∈ 𝐵 ∧ 𝑥 ∈ 𝐶) → 𝑖 = 𝑗)) |
| 24 | 2, 16, 23 | 3bitr4i 303 |
. 2
⊢
(∀𝑖 ∈
𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅) ↔ ∀𝑥∃*𝑖 ∈ 𝐴 𝑥 ∈ 𝐵) |
| 25 | 1, 24 | bitr4i 278 |
1
⊢
(Disj 𝑖
∈ 𝐴 𝐵 ↔ ∀𝑖 ∈ 𝐴 ∀𝑗 ∈ 𝐴 (𝑖 = 𝑗 ∨ (𝐵 ∩ 𝐶) = ∅)) |